Variation of the equilibrium energy and the $S$-property of stationary compact sets
Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1831-1852 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies a variation of the equilibrium energy for a certain fairly general functional which appears naturally in the solution of many rational approximation problems of multi-valued analytic functions. The main result of this work states that for the energy functional under consideration and a certain class of admissible compact sets, related to the function to be approximated, the corresponding stationary compact set is fully characterized by the so-called $S$-property. Bibliography: 38 titles.
Keywords: rational approximation, equilibrium distributions, stationary compact set, $S$-property.
Mots-clés : orthogonal polynomials, Padé approximants
@article{SM_2011_202_12_a4,
     author = {A. Mart{\'\i}nez-Finkelshtein and E. A. Rakhmanov and S. P. Suetin},
     title = {Variation of the equilibrium energy and the $S$-property of stationary compact sets},
     journal = {Sbornik. Mathematics},
     pages = {1831--1852},
     year = {2011},
     volume = {202},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_12_a4/}
}
TY  - JOUR
AU  - A. Martínez-Finkelshtein
AU  - E. A. Rakhmanov
AU  - S. P. Suetin
TI  - Variation of the equilibrium energy and the $S$-property of stationary compact sets
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1831
EP  - 1852
VL  - 202
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_12_a4/
LA  - en
ID  - SM_2011_202_12_a4
ER  - 
%0 Journal Article
%A A. Martínez-Finkelshtein
%A E. A. Rakhmanov
%A S. P. Suetin
%T Variation of the equilibrium energy and the $S$-property of stationary compact sets
%J Sbornik. Mathematics
%D 2011
%P 1831-1852
%V 202
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2011_202_12_a4/
%G en
%F SM_2011_202_12_a4
A. Martínez-Finkelshtein; E. A. Rakhmanov; S. P. Suetin. Variation of the equilibrium energy and the $S$-property of stationary compact sets. Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1831-1852. http://geodesic.mathdoc.fr/item/SM_2011_202_12_a4/

[1] G. V. Kuz'mina, “Moduli of families of curves and quadratic differentials”, Proc. Steklov Inst. Math., 139:1 (1982), 1–231 | MR | Zbl | Zbl

[2] G. V. Kuz'mina, “Methods of geometric function theory. I”, St. Petersburg Math. J., 9:3 (1998), 455–507 | MR | Zbl

[3] G. V. Kuz'mina, “Methods of geometric function theory. II”, St. Petersburg Math. J., 9:5 (1998), 889–930 | MR | Zbl

[4] G. V. Kuz'mina, “Gennadii Mikhailovich Goluzin and geometric function theory”, St. Petersburg Math. J., 18:3 (2007), 347–372 | DOI | MR | Zbl

[5] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[6] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324 | MR | Zbl

[7] H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4:4 (1985), 325–338 | MR | Zbl

[8] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | MR | Zbl

[9] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl

[10] A. Martínez Finkelshtein, “Trajectories of quadratic differentials and approximations of exponents on the semiaxis”, Complex methods in approximation theory (Almeria, 1995), Monogr. Cienc. Tecnol., 2, Univ. Almeria, Almeria, 1997, 69–84 | MR | Zbl

[11] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl

[12] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)”, Int. Math. Res. Pap. IMRP, 2008, ID 007 | DOI | MR | Zbl

[13] A. Martínez-Finkelshtein, E. A. Rakhmanov, “On asymptotic behavior of Heine–Stieltjes and Van Vleck polynomials”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 209–232 | MR | Zbl

[14] A. Martínez-Finkelshtein, E. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl

[15] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | MR | Zbl

[16] A. Deaño, D. Huybrechs, A. B. J. Kuijlaars, “Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature”, J. Approx. Theory, 162:12 (2010), 2202–2224 | DOI | MR | Zbl

[17] V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Metod vnutrennikh variatsii i suschestvovanie $S$-kompaktov”, 2012 (to appear)

[18] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the convergence of Pade approximations of orthogonal expansions”, Proc. Steklov Inst. Math., 200 (1993), 149–159 | MR | Zbl

[19] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in approximation theory (Tampa, FL, USA, 1990), Springer Ser. Comput. Math., 19, Springer-Verlag, New York, 1992, 169–190 | MR | Zbl

[20] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, On the convergence of Chebyshev–Padé approximations to real-valued algebraic functions, arXiv: http://arxiv.org/abs/1009.4813

[21] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, On the convergence on nonlinear Padé–Chebyshev approximations to the multivalued analytic functions, variation of equilibrium energy and $S$-property of stationary compacts, arXiv: http://arxiv.org/abs/1012.0170

[22] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “O skhodimosti lineinykh approksimatsii Pade–Chebysheva dlya mnogoznachnykh analiticheskikh funktsii”, 2012 (to appear)

[23] E. A. Perevoznikova, E. A. Rakhmanov, Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, preprint, M., 1994

[24] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium measure and the S-property of a stationary compact set”, Russian Math. Surveys, 66:1 (2011), 176–178 | DOI | Zbl

[25] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl

[26] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl

[27] H. Stahl, “Orthogonal polynomials with complex-valued weight function, I”, Constr. Approx., 2:1 (1986), 225–240 | DOI | MR | Zbl

[28] H. Stahl, “Orthogonal polynomials with complex-valued weight function, II”, Constr. Approx., 2:1 (1986), 241–251 | DOI | MR | Zbl

[29] H. Stahl, “The convergence of Pade approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[30] S. Kamvissis, E. A. Rakhmanov, “Existence and regularity for an energy maximization problem in two dimensions”, J. Math. Phys., 46:8 (2005), 083505 | DOI | MR | Zbl

[31] S. P. Suetin, “Nekotoryi analog variatsionnykh formul Adamara i Shiffera”, TMF, 2012 (to appear)

[32] T. Bergkvist, H. Rullgard, “On polynomial eigenfunctions for a class of differential operators”, Math. Res. Lett., 9:2–3 (2002), 153–171 | MR | Zbl

[33] M. Schiffer, “Hadamard's formula and variation of domain-functions”, Amer. J. Math., 68 (1946), 417–448 | DOI | MR | Zbl

[34] P. R. Garabedian, M. Schiffer, “Identities in the theory of conformal mapping”, Trans. Amer. Math. Soc., 65 (1949), 187–238 | DOI | MR | Zbl

[35] R. Courant, Dirichlet's Principle, conformal mapping, and minimal surfaces, Interscience Publ., New York, 1950 | MR | Zbl

[36] V. Heikkala, M. Vuorinen, “Teichmüller's extremal ring problem”, Math. Z., 254:3 (2006), 509–529 | DOI | MR | Zbl

[37] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl

[38] V. N. Dubinin, “Some properties of the reduced inner modulus”, Siberian Math. J., 35:4 (1994), 689–705 | DOI | MR | Zbl