On the measure of conformal difference between Euclidean and Lobachevsky spaces
Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1825-1830 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Euclidean space $\mathbb R^n$ and Lobachevsky space $\mathbb H^n$ are known to be not equivalent either conformally or quasiconformally. In this work we give exact asymptotics of the critical order of growth at infinity for the quasiconformality coefficient of a diffeomorphism $f\colon \mathbb R^n\to\mathbb H^n$ for which such a mapping $f$ is possible. We also consider the general case of immersions $f\colon M^n\to N^n$ of conformally parabolic Riemannian manifolds. Bibliography: 17 titles.
Keywords: quasiconformal mapping, Riemannian manifold, conformal type of a Riemannian manifold, Euclidean space, Lobachevsky space.
@article{SM_2011_202_12_a3,
     author = {V. A. Zorich},
     title = {On the measure of conformal difference between {Euclidean} and {Lobachevsky} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1825--1830},
     year = {2011},
     volume = {202},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_12_a3/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - On the measure of conformal difference between Euclidean and Lobachevsky spaces
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1825
EP  - 1830
VL  - 202
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_12_a3/
LA  - en
ID  - SM_2011_202_12_a3
ER  - 
%0 Journal Article
%A V. A. Zorich
%T On the measure of conformal difference between Euclidean and Lobachevsky spaces
%J Sbornik. Mathematics
%D 2011
%P 1825-1830
%V 202
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2011_202_12_a3/
%G en
%F SM_2011_202_12_a3
V. A. Zorich. On the measure of conformal difference between Euclidean and Lobachevsky spaces. Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1825-1830. http://geodesic.mathdoc.fr/item/SM_2011_202_12_a3/

[1] N. V. Efimov, “The validity of Hilbert's theorem on surfaces of constant negative curvature”, Soviet Math. Dokl., 2 (1961), 189–192 | MR | Zbl

[2] N. V. Efimov, “Impossibility of a complete regular surface in Euclidean 3-space whose Gaussian curvature has a negative upper bound”, Soviet Math. Dokl., 4 (1963), 843–846 | MR | Zbl

[3] N. V. Efimov, “Surfaces with a slowly changing negative curvature”, Russian Math. Surveys, 21:5 (1966), 1–55 | DOI | MR | Zbl

[4] V. A. Zorich, “Admissible order of growth of the quasiconformality characteristic in Lavrent'ev's theorem”, Soviet Math. Dokl., 9 (1968), 866–869 | MR | Zbl

[5] V. A. Zorich, “O stepeni konformnogo razlichiya prostranstv Evklida i Lobachevskogo”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 94:5 (1986), 94

[6] M. A. Lavrentev, “Ob odnom differentsialnom priznake gomeomorfnykh otobrazhenii trekhmernykh oblastei”, Dokl. AN SSSR, 20 (1938), 241–242 | Zbl

[7] V. A. Zorič, “A theorem of M. A. Lavrent'ev on quasiconformal space maps”, Math. USSR-Sb., 3:3 (1967), 389–403 | DOI | MR | Zbl | Zbl

[8] V. A. Zorich, “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Quasiconformal space mappings, Lecture Notes in Math., 1508, Springer-Verlag, Berlin, 1992, 132–148 | DOI | MR | Zbl

[9] V. A. Zorich, “Quasi-conformal maps and the asymptotic geometry of manifolds”, Russian Math. Surveys, 57:3 (2002), 437–462 | DOI | MR | Zbl

[10] M. Gromov, “Hyperbolic manifolds, groups and actions”, Riemann surfaces and related topics (Stony Brook, NY, USA, 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 183–213 | MR | Zbl

[11] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., 152, Birkhäuser, Boston, MA, 1999 | MR | Zbl

[12] V. A. Zorich, “Quasiconformal immersions of Riemannian manifolds and a Picard type theorem”, Funct. Anal. Appl., 34:3 (2000), 188–196 | DOI | MR | Zbl

[13] V. A. Zorich, V. M. Kesel'man, “On the conformal type of a Riemannian manifold”, Funct. Anal. Appl., 30:2 (1996), 106–117 | DOI | MR | Zbl

[14] V. A. Zorich, “Asymptotics of the attainable growth of the quasiconformity coefficient at infinity and the injectivity of immersions of Riemannian manifolds”, Russian Math. Surveys, 58:3 (2003), 624–626 | DOI | MR | Zbl

[15] V. A. Zorich, “Asymptotics of the admissible growth of the coefficient of quasiconformality at infinity and injectivity of immersions of Riemannian manifolds”, Publ. Inst. Math. (Beograd) (N.S.), 75(89) (2004), 53–57 | DOI | MR | Zbl

[16] V. M. Kesel'man, “An isoperimetric inequality on conformally hyperbolic manifolds”, Sb. Math., 194:4 (2003), 495–513 | DOI | MR | Zbl

[17] V. M. Kesel'man, “The isoperimetric inequality on conformally parabolic manifolds”, Sb. Math., 200:1 (2009), 1–33 | DOI | MR | Zbl