On the measure of conformal difference between Euclidean and Lobachevsky spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1825-1830
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Euclidean space $\mathbb R^n$ and Lobachevsky space $\mathbb H^n$ are known to be not equivalent either conformally or quasiconformally. In this work we give exact asymptotics of the critical order of growth at infinity for the quasiconformality coefficient of a diffeomorphism $f\colon \mathbb R^n\to\mathbb H^n$ for which such a mapping $f$ is possible. We also consider the general case of immersions $f\colon M^n\to N^n$ of conformally parabolic Riemannian manifolds.
Bibliography: 17 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
quasiconformal mapping, Riemannian manifold, conformal type of a Riemannian manifold, Euclidean space, Lobachevsky space.
                    
                    
                    
                  
                
                
                @article{SM_2011_202_12_a3,
     author = {V. A. Zorich},
     title = {On the measure of conformal difference between {Euclidean} and {Lobachevsky} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1825--1830},
     publisher = {mathdoc},
     volume = {202},
     number = {12},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_12_a3/}
}
                      
                      
                    V. A. Zorich. On the measure of conformal difference between Euclidean and Lobachevsky spaces. Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1825-1830. http://geodesic.mathdoc.fr/item/SM_2011_202_12_a3/
