Bounds for the moduli of continuity for conformal mappings of domains near their accessible boundary arcs
Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1775-1823 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents bounds for the moduli of continuity $\omega(f,\overline{G},\delta)$ of conformal mappings $w=f(z)$ of a bounded simply connected domain $G$ with an arbitrary Jordan boundary onto a bounded simply connected domain with an arbitrary Jordan boundary, the ‘quality’ of boundaries being taken into account. For a Jordan curve (simple arc or a closed contour), its quality is characterized in general by its modulus of oscillation, and if it has finite length, by a more sensitive modulus of rectifiability — these purely metric concepts were introduced by the author in 1996. Theorems on the behaviour of conformal mappings of simply connected domains of arbitrary nature near open accessible boundary arcs are established. Bibliography: 18 titles.
Keywords: univalent conformal mapping, accessible boundary arc of a simply connected domain, modulus of continuity, modulus of rectifiability.
Mots-clés : modulus of oscillation
@article{SM_2011_202_12_a2,
     author = {E. P. Dolzhenko},
     title = {Bounds for the moduli of continuity for conformal mappings of domains near their accessible boundary arcs},
     journal = {Sbornik. Mathematics},
     pages = {1775--1823},
     year = {2011},
     volume = {202},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_12_a2/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
TI  - Bounds for the moduli of continuity for conformal mappings of domains near their accessible boundary arcs
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1775
EP  - 1823
VL  - 202
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_12_a2/
LA  - en
ID  - SM_2011_202_12_a2
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%T Bounds for the moduli of continuity for conformal mappings of domains near their accessible boundary arcs
%J Sbornik. Mathematics
%D 2011
%P 1775-1823
%V 202
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2011_202_12_a2/
%G en
%F SM_2011_202_12_a2
E. P. Dolzhenko. Bounds for the moduli of continuity for conformal mappings of domains near their accessible boundary arcs. Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1775-1823. http://geodesic.mathdoc.fr/item/SM_2011_202_12_a2/

[1] O. D. Kellogg, “Harmonic functions and Green's integral”, Trans. Amer. Math. Soc., 13:1 (1912), 109–132 | DOI | MR | Zbl

[2] S. E. Warschawski, “On the higher derivatives at the boundary in conformal mapping”, Trans. Amer. Math. Soc., 38, no. 2, 1935, 310–340 | DOI | MR | Zbl

[3] S. E. Warschawski, “On differentiability at the boundary in conformal mapping”, Proc. Amer. Math. Soc., 12:4 (1961), 614–620 | DOI | MR | Zbl

[4] E. P. Dolzhenko, “Some remarks on the modulus of continuity of a conformal mapping of the disk onto a Jordan domain”, Math. Notes, 60:2 (1996), 130–136 | DOI | MR | Zbl

[5] E. P. Dolzhenko, “On conformal mappings of Jordan domains”, Moscow Univ. Math. Bull., 54:4 (1999), 47–49 | MR | Zbl

[6] E. P. Dolzhenko, “On modules of continuity of conformal mappings of arbitrary Jordan domains”, J. Math. Sci. (New York), 108:3 (2002), 411–419 | DOI | MR | Zbl

[7] E. P. Dolzhenko, “O stepeni “gladkosti” konformnykh otobrazhenii zhordanovykh oblastei s negladkimi granitsami, Kompleksnyi analiz i teoriya potentsiala”, Trudy Ukrainskogo matem. kongressa 2001 (Kiev, Ukraina, 2001), In-t matem. NAN Ukrainy, Kiev, 2003, 25–33 | MR | Zbl

[8] E. P. Dolzhenko, “On the boundary smoothness of conformal mappings between domains with nonsmooth boundaries”, Dokl. Math., 76:1 (2007), 514–518 | DOI | MR | Zbl

[9] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl

[10] M. A. Lavrentev, “O nepreryvnosti odnolistnykh funktsii v zamknutykh oblastyakh”, Dokl. AN SSSR, 4:5 (1936), 207–209

[11] G. D. Suvorov, Obobschennyi “printsip dliny i ploschadi” v teorii otobrazhenii, Naukova dumka, Kiev, 1985 | MR | Zbl

[12] P. M. Tamrazov, “Contour and solid structure properties of holomorphic functions of a complex variable”, Russian Math. Surveys, 28:1 (1973), 141–173 | DOI | MR | Zbl | Zbl

[13] W. Blaschke, Kreis und Kugel, de Gruyter, Berlin, 1956 | MR | MR | Zbl | Zbl

[14] P. Uryson, “Zavisimost mezhdu srednei shirinoi i ob'emom vypuklykh tel v $n$-mernom prostranstve”, Matem. sb., 31:3–4 (1924), 477–486 | Zbl

[15] S. Saks, Theory of the integral, Dover Publ., New York, 1937 | MR | Zbl

[16] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[17] E. P. Dolzhenko, “Gladkost garmonicheskikh i analiticheskikh funktsii v granichnykh tochkakh oblasti”, Izv. AN SSSR. Ser. matem., 29:5 (1965), 1069–1084 | MR | Zbl

[18] E. P. Dolzhenko, S. V. Kolesnikov, “The behavior of conformal maps of domains near convex boundary arcs”, Math. Notes, 90:4 (2011), 485–497 | DOI