An estimate for the sum of a~Dirichlet series in terms of the minimum of its modulus on a~vertical line segment
Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1741-1773

Voir la notice de l'article provenant de la source Math-Net.Ru

The behaviour of the sum of an entire Dirichlet series is analyzed in terms of the minimum of its modulus on a system of vertical line segments. Also a more general problem, connected with the Pólya conjecture is posed and solved. It concerns the minimum modulus of an entire function with Fabri gaps and its growth along curves going to infinity. Bibliography: 33 titles.
Keywords: Dirichlet series, minimum modulus, Fejér gaps.
@article{SM_2011_202_12_a1,
     author = {A. M. Gaisin and Zh. G. Rakhmatullina},
     title = {An estimate for the sum of {a~Dirichlet} series in terms of the minimum of its modulus on a~vertical line segment},
     journal = {Sbornik. Mathematics},
     pages = {1741--1773},
     publisher = {mathdoc},
     volume = {202},
     number = {12},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_12_a1/}
}
TY  - JOUR
AU  - A. M. Gaisin
AU  - Zh. G. Rakhmatullina
TI  - An estimate for the sum of a~Dirichlet series in terms of the minimum of its modulus on a~vertical line segment
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1741
EP  - 1773
VL  - 202
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_12_a1/
LA  - en
ID  - SM_2011_202_12_a1
ER  - 
%0 Journal Article
%A A. M. Gaisin
%A Zh. G. Rakhmatullina
%T An estimate for the sum of a~Dirichlet series in terms of the minimum of its modulus on a~vertical line segment
%J Sbornik. Mathematics
%D 2011
%P 1741-1773
%V 202
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_12_a1/
%G en
%F SM_2011_202_12_a1
A. M. Gaisin; Zh. G. Rakhmatullina. An estimate for the sum of a~Dirichlet series in terms of the minimum of its modulus on a~vertical line segment. Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1741-1773. http://geodesic.mathdoc.fr/item/SM_2011_202_12_a1/