Boundary regularity of Nevanlinna domains and univalent functions in model subspaces
Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1723-1740 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study boundary regularity of Nevanlinna domains, which have appeared in problems of uniform approximation by polyanalytic polynomials. A new method for constructing Nevanlinna domains with essentially irregular nonanalytic boundaries is suggested; this method is based on finding appropriate univalent functions in model subspaces, that is, in subspaces of the form $K_\varTheta=H^2\ominus\varTheta H^2$, where $\varTheta$ is an inner function. To describe the irregularity of the boundaries of the domains obtained, recent results by Dolzhenko about boundary regularity of conformal mappings are used. Bibliography: 18 titles.
Keywords: model subspace $K_\varTheta$, conformal mapping, inner function, Blaschke product.
Mots-clés : Nevanlinna domain
@article{SM_2011_202_12_a0,
     author = {A. D. Baranov and K. Yu. Fedorovskiy},
     title = {Boundary regularity of {Nevanlinna} domains and univalent functions in model subspaces},
     journal = {Sbornik. Mathematics},
     pages = {1723--1740},
     year = {2011},
     volume = {202},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/}
}
TY  - JOUR
AU  - A. D. Baranov
AU  - K. Yu. Fedorovskiy
TI  - Boundary regularity of Nevanlinna domains and univalent functions in model subspaces
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1723
EP  - 1740
VL  - 202
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/
LA  - en
ID  - SM_2011_202_12_a0
ER  - 
%0 Journal Article
%A A. D. Baranov
%A K. Yu. Fedorovskiy
%T Boundary regularity of Nevanlinna domains and univalent functions in model subspaces
%J Sbornik. Mathematics
%D 2011
%P 1723-1740
%V 202
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/
%G en
%F SM_2011_202_12_a0
A. D. Baranov; K. Yu. Fedorovskiy. Boundary regularity of Nevanlinna domains and univalent functions in model subspaces. Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1723-1740. http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/

[1] K. Yu. Fedorovskii, “Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$”, Math. Notes, 59:4 (1996), 435–439 | DOI | MR | Zbl

[2] J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskii, “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sb. Math., 193:10 (2002), 1469–1492 | DOI | MR | Zbl

[3] A. Boivin, P. M. Gauthier, P. V. Paramonov, “On uniform approximation by $n$-analytic functions on closed sets in $\mathbb C$”, Izv. Math., 68:3 (2004), 447–459 | DOI | MR | Zbl

[4] J. Carmona, K. Fedorovskiy, “Conformal maps and uniform approximation by polyanalytic functions”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 109–130 | DOI | MR | Zbl

[5] A. B. Zaitsev, “Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets”, Izv. Math., 68:6 (2004), 1143–1156 | DOI | MR | Zbl

[6] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[7] K. Yu. Fedorovskii, “On some properties and examples of Nevanlinna domains”, Proc. Steklov Inst. Math., 253:1 (2006), 186–194 | DOI | MR

[8] M. Ya. Mazalov, “An example of a nonconstant bianalytic function vanishing everywhere on a nowhere analytic boundary”, Math. Notes, 62:4 (1997), 524–526 | DOI | MR | Zbl

[9] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl

[10] N. K. Nikol'skiǐ, Treatise on the shift operator, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin–Heidelberg, 1986 | MR | MR | Zbl | Zbl

[11] K. Yu. Fedorovskii, “Approximation and boundary properties of polyanalytic functions”, Proc. Steklov Inst. Math., 235:4 (2001), 251–260 | MR | Zbl

[12] E. P. Dolzhenko, “On the boundary smoothness of conformal mappings between domains with nonsmooth boundaries”, Dokl. Math., 76:1 (2007), 514–518 | DOI | MR | Zbl

[13] E. P. Dolzhenko, “Otsenki modulei nepreryvnosti konformnykh otobrazhenii oblastei vblizi ikh dostizhimykh granichnykh dug”, Matem. sbornik, 202:12 (2011), 57–106

[14] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl

[15] P. R. Ahern, D. N. Clark, “On functions orthogonal to invariant subspaces”, Acta Math., 124:1 (1970), 191–204 | DOI | MR | Zbl

[16] M. Putinar, H. S. Shapiro, “The Friedrichs operator of a planar domain”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 303–330 | MR | Zbl

[17] L. Carleson, “Sets of uniqueness for functions regular in the unit circle”, Acta Math., 87:1 (1952), 325–345 | DOI | MR | Zbl

[18] K. Dyakonov, D. Khavinson, “Smooth functions in star-invariant subspaces”, Recent advances in operator-related function theory (Dublin, Ireland, 2004), Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 59–66 | MR | Zbl