Boundary regularity of Nevanlinna domains and univalent functions in model subspaces
Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1723-1740
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we study boundary regularity of Nevanlinna domains, which have appeared in problems of uniform approximation by polyanalytic polynomials. A new method for constructing Nevanlinna domains with essentially irregular nonanalytic boundaries is suggested; this method is based on finding appropriate univalent
functions in model subspaces, that is, in subspaces of the form $K_\varTheta=H^2\ominus\varTheta H^2$, where $\varTheta$ is an inner function. To describe the irregularity of the boundaries of the domains obtained, recent results by Dolzhenko about boundary regularity of conformal mappings are used.
Bibliography: 18 titles.
Keywords:
model subspace $K_\varTheta$, conformal mapping, inner function, Blaschke product.
Mots-clés : Nevanlinna domain
Mots-clés : Nevanlinna domain
@article{SM_2011_202_12_a0,
author = {A. D. Baranov and K. Yu. Fedorovskiy},
title = {Boundary regularity of {Nevanlinna} domains and univalent functions in model subspaces},
journal = {Sbornik. Mathematics},
pages = {1723--1740},
publisher = {mathdoc},
volume = {202},
number = {12},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/}
}
TY - JOUR AU - A. D. Baranov AU - K. Yu. Fedorovskiy TI - Boundary regularity of Nevanlinna domains and univalent functions in model subspaces JO - Sbornik. Mathematics PY - 2011 SP - 1723 EP - 1740 VL - 202 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/ LA - en ID - SM_2011_202_12_a0 ER -
A. D. Baranov; K. Yu. Fedorovskiy. Boundary regularity of Nevanlinna domains and univalent functions in model subspaces. Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1723-1740. http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/