Mots-clés : Nevanlinna domain
@article{SM_2011_202_12_a0,
author = {A. D. Baranov and K. Yu. Fedorovskiy},
title = {Boundary regularity of {Nevanlinna} domains and univalent functions in model subspaces},
journal = {Sbornik. Mathematics},
pages = {1723--1740},
year = {2011},
volume = {202},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/}
}
TY - JOUR AU - A. D. Baranov AU - K. Yu. Fedorovskiy TI - Boundary regularity of Nevanlinna domains and univalent functions in model subspaces JO - Sbornik. Mathematics PY - 2011 SP - 1723 EP - 1740 VL - 202 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/ LA - en ID - SM_2011_202_12_a0 ER -
A. D. Baranov; K. Yu. Fedorovskiy. Boundary regularity of Nevanlinna domains and univalent functions in model subspaces. Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1723-1740. http://geodesic.mathdoc.fr/item/SM_2011_202_12_a0/
[1] K. Yu. Fedorovskii, “Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$”, Math. Notes, 59:4 (1996), 435–439 | DOI | MR | Zbl
[2] J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskii, “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sb. Math., 193:10 (2002), 1469–1492 | DOI | MR | Zbl
[3] A. Boivin, P. M. Gauthier, P. V. Paramonov, “On uniform approximation by $n$-analytic functions on closed sets in $\mathbb C$”, Izv. Math., 68:3 (2004), 447–459 | DOI | MR | Zbl
[4] J. Carmona, K. Fedorovskiy, “Conformal maps and uniform approximation by polyanalytic functions”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 109–130 | DOI | MR | Zbl
[5] A. B. Zaitsev, “Uniform approximability of functions by polynomial solutions of second-order elliptic equations on compact plane sets”, Izv. Math., 68:6 (2004), 1143–1156 | DOI | MR | Zbl
[6] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl
[7] K. Yu. Fedorovskii, “On some properties and examples of Nevanlinna domains”, Proc. Steklov Inst. Math., 253:1 (2006), 186–194 | DOI | MR
[8] M. Ya. Mazalov, “An example of a nonconstant bianalytic function vanishing everywhere on a nowhere analytic boundary”, Math. Notes, 62:4 (1997), 524–526 | DOI | MR | Zbl
[9] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl
[10] N. K. Nikol'skiǐ, Treatise on the shift operator, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin–Heidelberg, 1986 | MR | MR | Zbl | Zbl
[11] K. Yu. Fedorovskii, “Approximation and boundary properties of polyanalytic functions”, Proc. Steklov Inst. Math., 235:4 (2001), 251–260 | MR | Zbl
[12] E. P. Dolzhenko, “On the boundary smoothness of conformal mappings between domains with nonsmooth boundaries”, Dokl. Math., 76:1 (2007), 514–518 | DOI | MR | Zbl
[13] E. P. Dolzhenko, “Otsenki modulei nepreryvnosti konformnykh otobrazhenii oblastei vblizi ikh dostizhimykh granichnykh dug”, Matem. sbornik, 202:12 (2011), 57–106
[14] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl
[15] P. R. Ahern, D. N. Clark, “On functions orthogonal to invariant subspaces”, Acta Math., 124:1 (1970), 191–204 | DOI | MR | Zbl
[16] M. Putinar, H. S. Shapiro, “The Friedrichs operator of a planar domain”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 303–330 | MR | Zbl
[17] L. Carleson, “Sets of uniqueness for functions regular in the unit circle”, Acta Math., 87:1 (1952), 325–345 | DOI | MR | Zbl
[18] K. Dyakonov, D. Khavinson, “Smooth functions in star-invariant subspaces”, Recent advances in operator-related function theory (Dublin, Ireland, 2004), Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 59–66 | MR | Zbl