Equations of $G$-minimal conic bundles
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1667-1721

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a method for obtaining equations for $G$-minimal conic bundles with an arbitrary number of singular fibres. When the number of singular fibres is equal to $4$, $6$, or $7$, a detailed classification is given, which includes obtaining the equations for minimal conic bundles $(S,G)$ and an explicit indication of the action of the group $G$ on the Picard group $\operatorname{Pic}(S)$ and on the surface $S$ itself. Bibliography: 19 titles.
Keywords: Cremona group, conic bundle
Mots-clés : automorphism group.
@article{SM_2011_202_11_a5,
     author = {V. I. Tsygankov},
     title = {Equations of $G$-minimal conic bundles},
     journal = {Sbornik. Mathematics},
     pages = {1667--1721},
     publisher = {mathdoc},
     volume = {202},
     number = {11},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/}
}
TY  - JOUR
AU  - V. I. Tsygankov
TI  - Equations of $G$-minimal conic bundles
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1667
EP  - 1721
VL  - 202
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/
LA  - en
ID  - SM_2011_202_11_a5
ER  - 
%0 Journal Article
%A V. I. Tsygankov
%T Equations of $G$-minimal conic bundles
%J Sbornik. Mathematics
%D 2011
%P 1667-1721
%V 202
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/
%G en
%F SM_2011_202_11_a5
V. I. Tsygankov. Equations of $G$-minimal conic bundles. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1667-1721. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/