Equations of $G$-minimal conic bundles
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1667-1721 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a method for obtaining equations for $G$-minimal conic bundles with an arbitrary number of singular fibres. When the number of singular fibres is equal to $4$, $6$, or $7$, a detailed classification is given, which includes obtaining the equations for minimal conic bundles $(S,G)$ and an explicit indication of the action of the group $G$ on the Picard group $\operatorname{Pic}(S)$ and on the surface $S$ itself. Bibliography: 19 titles.
Keywords: Cremona group, conic bundle
Mots-clés : automorphism group.
@article{SM_2011_202_11_a5,
     author = {V. I. Tsygankov},
     title = {Equations of $G$-minimal conic bundles},
     journal = {Sbornik. Mathematics},
     pages = {1667--1721},
     year = {2011},
     volume = {202},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/}
}
TY  - JOUR
AU  - V. I. Tsygankov
TI  - Equations of $G$-minimal conic bundles
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1667
EP  - 1721
VL  - 202
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/
LA  - en
ID  - SM_2011_202_11_a5
ER  - 
%0 Journal Article
%A V. I. Tsygankov
%T Equations of $G$-minimal conic bundles
%J Sbornik. Mathematics
%D 2011
%P 1667-1721
%V 202
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/
%G en
%F SM_2011_202_11_a5
V. I. Tsygankov. Equations of $G$-minimal conic bundles. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1667-1721. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/

[1] E. Bertini, “Ricerche sulle trasformazioni univoche involutorie nel piano”, Annali di Mat. (2), 8 (1877), 254–287 | Zbl

[2] L. Bayle, A. Beauville, “Birational involutions of $\mathbb P^2$”, Asian J. Math., 4:1 (2000), 11–17 | MR | Zbl

[3] S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Mayer Müller, Berlin, 1895

[4] A. Wiman, “Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene”, Math. Ann., 48:1–2 (1896), 195–240 | DOI | MR | Zbl

[5] J. I. Manin, “Rational surfaces over perfect fields. II”, Math. USSR-Sb., 1:2 (1967), 141–168 | DOI | MR | Zbl

[6] V. A. Iskovskih, “Rational surfaces with a pencil of rational curves”, Math. USSR-Sb., 3:4 (1967), 563–587 | DOI | MR | Zbl

[7] V. A. Iskovskih, “Rational surfaces with a pencil of rational curves and with positive square of the canonical class”, Math. USSR-Sb., 12:1 (1970), 91–117 | DOI | MR | Zbl | Zbl

[8] V. A. Iskovskih, “Minimal models of rational surfaces over arbitrary fields”, Math. USSR-Izv., 14:1 (1980), 17–39 | DOI | MR | Zbl | Zbl

[9] V. A. Iskovskikh, “Generators and relations in a two-dimensional Cremona group”, Moscow Univ. Math. Bull., 38:5 (1983), 56–63 | MR | Zbl | Zbl

[10] V. A. Iskovskikh, “Factorization of birational maps of rational surfaces from the viewpoint of Mori theory”, Russian Math. Surveys, 51:4 (1996), 585–652 | DOI | MR | Zbl

[11] T. de Fernex, “On planar Cremona maps of prime order”, Nagoya Math. J., 174 (2004), 1–28 | MR | Zbl

[12] A. Beauville, J. Blanc, “On Cremona transformations of prime order”, C. R. Math. Acad. Sci. Paris, 339:4 (2004), 257–259 | DOI | MR | Zbl

[13] A. Beauville, “$p$-elementary subgroups of the Cremona group”, J. Algebra, 314:2 (2007), 553–564 | DOI | MR | Zbl

[14] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhaüser, Boston, MA, 2009, 443–548 | MR | Zbl

[15] J. Blanc, “Finite Abelian subgroups of the Cremona group of the plane”, C. R. Math. Acad. Sci. Paris, 344:1 (2007), 21–26 | DOI | MR | Zbl

[16] V. I. Tsygankov, “Equations of $G$-minimal conic bundles with degree 4”, Russian Math. Surveys, 65:2 (1996), 72–75 | DOI | MR

[17] J. Blanc, “Elements and cyclic subgroups of finite order of the Cremona group”, Comment. Math. Helv., 86:2 (2010), 469–497 | DOI | MR | Zbl

[18] I. V. Dolgachev, Topics in classical algebraic geometry, Part I, http://www.math.lsa.umich.edu/~idolga/lecturenotes.html

[19] V. A. Iskovskikh, “Anticanonical models of three-dimensional algebraic varieties”, J. Soviet Math., 13:6 (1980), 745–814 | DOI | MR | Zbl | Zbl