Equations of $G$-minimal conic bundles
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1667-1721
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a method for obtaining equations for $G$-minimal conic bundles with an arbitrary number of singular fibres. When the number of singular fibres is equal to $4$, $6$, or $7$, a detailed classification is given, which includes obtaining the equations for minimal conic bundles $(S,G)$ and an explicit indication of the action of the group $G$ on the Picard group $\operatorname{Pic}(S)$ and on the surface $S$ itself.
Bibliography: 19 titles.
Keywords:
Cremona group, conic bundle
Mots-clés : automorphism group.
Mots-clés : automorphism group.
@article{SM_2011_202_11_a5,
author = {V. I. Tsygankov},
title = {Equations of $G$-minimal conic bundles},
journal = {Sbornik. Mathematics},
pages = {1667--1721},
publisher = {mathdoc},
volume = {202},
number = {11},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/}
}
V. I. Tsygankov. Equations of $G$-minimal conic bundles. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1667-1721. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a5/