Powers of sets in free groups
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1661-1666

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that $|A^n|\geqslant c_n\cdot|A|^{[(n+1)/2]}$ for any finite subset $A$ of a free group if $A$ contains at least two noncommuting elements, where the $c_n>0$ are constants not depending on $A$. Simple examples show that the order of these estimates is best possible for each $n>0$. Bibliography: 5 titles.
Keywords: free group, relations in a free group, subsets of a free group.
@article{SM_2011_202_11_a4,
     author = {S. R. Safin},
     title = {Powers of sets in free groups},
     journal = {Sbornik. Mathematics},
     pages = {1661--1666},
     publisher = {mathdoc},
     volume = {202},
     number = {11},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a4/}
}
TY  - JOUR
AU  - S. R. Safin
TI  - Powers of sets in free groups
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1661
EP  - 1666
VL  - 202
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_11_a4/
LA  - en
ID  - SM_2011_202_11_a4
ER  - 
%0 Journal Article
%A S. R. Safin
%T Powers of sets in free groups
%J Sbornik. Mathematics
%D 2011
%P 1661-1666
%V 202
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_11_a4/
%G en
%F SM_2011_202_11_a4
S. R. Safin. Powers of sets in free groups. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1661-1666. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a4/