Powers of sets in free groups
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1661-1666
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that $|A^n|\geqslant c_n\cdot|A|^{[(n+1)/2]}$ for any finite subset $A$ of a free group if $A$ contains at least two noncommuting elements, where the $c_n>0$ are constants not depending on $A$. Simple examples show that the order of these estimates is best possible for each $n>0$. Bibliography: 5 titles.
Keywords:
free group, relations in a free group, subsets of a free group.
@article{SM_2011_202_11_a4,
author = {S. R. Safin},
title = {Powers of sets in free groups},
journal = {Sbornik. Mathematics},
pages = {1661--1666},
year = {2011},
volume = {202},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a4/}
}
S. R. Safin. Powers of sets in free groups. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1661-1666. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a4/
[1] M.-Ch. Chang, “Product theorems in $\operatorname{SL}_2$ and $\operatorname{SL}_3$”, J. Inst. Math. Jussieu, 7:1 (2008), 1–25 | DOI | MR | Zbl
[2] A. A. Razborov, A product theorem in free groups. Preprint, 2007
[3] M. B. Nathanson, Additive number theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math., 165, Springer-Verlag, New York, 1996 | MR | Zbl
[4] T. Tao, V. H. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[5] A. G. Kurosch, The theory of groups, Chelsea Publ., New York, 1955 | MR | MR | Zbl | Zbl