An adelic construction of Chern classes
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1637-1659 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a formula expressing the second Chern class $c_2(E)$ in terms of trivializations of a rank two vector bundle $E$ at scheme points of a surface $X$ over a field. To do this, starting with these trivializations, we construct a cocycle in the adelic complex associated with the sheaf $\operatorname{K}_2(\mathscr O_X)$. Furthermore we prove that the Severi formula for the second Chern class is obtained as a special case of the formula constructed in this work. Bibliography: 10 titles.
Keywords: Chern class, adelic complex.
@article{SM_2011_202_11_a3,
     author = {R. Ya. Budylin},
     title = {An adelic construction of {Chern} classes},
     journal = {Sbornik. Mathematics},
     pages = {1637--1659},
     year = {2011},
     volume = {202},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/}
}
TY  - JOUR
AU  - R. Ya. Budylin
TI  - An adelic construction of Chern classes
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1637
EP  - 1659
VL  - 202
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/
LA  - en
ID  - SM_2011_202_11_a3
ER  - 
%0 Journal Article
%A R. Ya. Budylin
%T An adelic construction of Chern classes
%J Sbornik. Mathematics
%D 2011
%P 1637-1659
%V 202
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/
%G en
%F SM_2011_202_11_a3
R. Ya. Budylin. An adelic construction of Chern classes. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1637-1659. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/

[1] A. N. Parshin, “Chern classes, adèles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | DOI | MR | Zbl

[2] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl | Zbl

[3] A. N. Parshin, “Abelian coverings of arithmetic schemes”, Soviet Math. Dokl., 19:6 (1978), 1438–1442 | MR | Zbl

[4] S. Bloch, “$\operatorname{K}_2$ and algebraic cycles”, Ann. of Math. (2), 99 (1974), 349–379 | DOI | MR | Zbl

[5] P. Deligne, “Sommes de Gauss cubiques et revetements de $\operatorname{SL}(2)$, d'apres S. J. Patterson”, Séminaire Bourbaki, Exp. No. 539, Lect. Notes Math., 770, Springer-Verlag, Berlin, 1980, 244–277 | DOI | MR | Zbl

[6] A. N. Parshin, “Vector bundles and arithmetic groups. II”, Proc. Steklov Inst. Math., 241 (2003), 164–176 | MR | Zbl

[7] J.-P. Serre, Cohomologie galoisienne, Springer-Verlag, Berlin–Heidelberg–New York, 1962–1963 | MR | MR | Zbl | Zbl

[8] S. O. Gorchinskii, “An adelic resolution for homology sheaves”, Izv. Math., 72:6 (2008), 1187–1252 | DOI | MR | Zbl

[9] J. Milnor, Introduction to algebraic $K$-theory, Princeton Univ. Press, Princeton, NJ, 1971 | MR | MR | Zbl | Zbl

[10] M. R. Stein, “Surjective stability in dimension 0 for K$_2$ and related functors”, Trans. Amer. Math. Soc., 178 (1973), 165–191 | DOI | MR | Zbl