@article{SM_2011_202_11_a3,
author = {R. Ya. Budylin},
title = {An adelic construction of {Chern} classes},
journal = {Sbornik. Mathematics},
pages = {1637--1659},
year = {2011},
volume = {202},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/}
}
R. Ya. Budylin. An adelic construction of Chern classes. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1637-1659. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/
[1] A. N. Parshin, “Chern classes, adèles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | DOI | MR | Zbl
[2] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl | Zbl
[3] A. N. Parshin, “Abelian coverings of arithmetic schemes”, Soviet Math. Dokl., 19:6 (1978), 1438–1442 | MR | Zbl
[4] S. Bloch, “$\operatorname{K}_2$ and algebraic cycles”, Ann. of Math. (2), 99 (1974), 349–379 | DOI | MR | Zbl
[5] P. Deligne, “Sommes de Gauss cubiques et revetements de $\operatorname{SL}(2)$, d'apres S. J. Patterson”, Séminaire Bourbaki, Exp. No. 539, Lect. Notes Math., 770, Springer-Verlag, Berlin, 1980, 244–277 | DOI | MR | Zbl
[6] A. N. Parshin, “Vector bundles and arithmetic groups. II”, Proc. Steklov Inst. Math., 241 (2003), 164–176 | MR | Zbl
[7] J.-P. Serre, Cohomologie galoisienne, Springer-Verlag, Berlin–Heidelberg–New York, 1962–1963 | MR | MR | Zbl | Zbl
[8] S. O. Gorchinskii, “An adelic resolution for homology sheaves”, Izv. Math., 72:6 (2008), 1187–1252 | DOI | MR | Zbl
[9] J. Milnor, Introduction to algebraic $K$-theory, Princeton Univ. Press, Princeton, NJ, 1971 | MR | MR | Zbl | Zbl
[10] M. R. Stein, “Surjective stability in dimension 0 for K$_2$ and related functors”, Trans. Amer. Math. Soc., 178 (1973), 165–191 | DOI | MR | Zbl