An adelic construction of Chern classes
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1637-1659

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a formula expressing the second Chern class $c_2(E)$ in terms of trivializations of a rank two vector bundle $E$ at scheme points of a surface $X$ over a field. To do this, starting with these trivializations, we construct a cocycle in the adelic complex associated with the sheaf $\operatorname{K}_2(\mathscr O_X)$. Furthermore we prove that the Severi formula for the second Chern class is obtained as a special case of the formula constructed in this work. Bibliography: 10 titles.
Keywords: Chern class, adelic complex.
@article{SM_2011_202_11_a3,
     author = {R. Ya. Budylin},
     title = {An adelic construction of {Chern} classes},
     journal = {Sbornik. Mathematics},
     pages = {1637--1659},
     publisher = {mathdoc},
     volume = {202},
     number = {11},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/}
}
TY  - JOUR
AU  - R. Ya. Budylin
TI  - An adelic construction of Chern classes
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1637
EP  - 1659
VL  - 202
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/
LA  - en
ID  - SM_2011_202_11_a3
ER  - 
%0 Journal Article
%A R. Ya. Budylin
%T An adelic construction of Chern classes
%J Sbornik. Mathematics
%D 2011
%P 1637-1659
%V 202
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/
%G en
%F SM_2011_202_11_a3
R. Ya. Budylin. An adelic construction of Chern classes. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1637-1659. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/