An adelic construction of Chern classes
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1637-1659
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We give a formula expressing the second Chern class $c_2(E)$ in terms of trivializations of a rank two vector bundle $E$ at scheme points of a surface $X$ over a field. To do this, starting with these trivializations,
we construct a cocycle in the adelic complex associated with the sheaf $\operatorname{K}_2(\mathscr O_X)$. Furthermore we prove that the Severi formula for the second Chern class is obtained as a special case of the formula constructed in this work.
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Chern class, adelic complex.
                    
                    
                    
                  
                
                
                @article{SM_2011_202_11_a3,
     author = {R. Ya. Budylin},
     title = {An adelic construction of {Chern} classes},
     journal = {Sbornik. Mathematics},
     pages = {1637--1659},
     publisher = {mathdoc},
     volume = {202},
     number = {11},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/}
}
                      
                      
                    R. Ya. Budylin. An adelic construction of Chern classes. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1637-1659. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a3/
