Asymptotic behaviour of singular points of solutions of the problem of heavy $n$-dimensional body motion in the Lagrange case
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1617-1635 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The single-valuedness of solutions to the Lagrange case of a heavy $n$-dimensional body motion problem is proved. All entire solutions are found. Bibliography: 23 titles.
Keywords: multidimensional body, Lagrange case, complete integrability, asymptotic behaviour of solutions, singular points of solutions.
@article{SM_2011_202_11_a2,
     author = {A. V. Belyaev},
     title = {Asymptotic behaviour of singular points of solutions of the problem of heavy $n$-dimensional body motion in the {Lagrange} case},
     journal = {Sbornik. Mathematics},
     pages = {1617--1635},
     year = {2011},
     volume = {202},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a2/}
}
TY  - JOUR
AU  - A. V. Belyaev
TI  - Asymptotic behaviour of singular points of solutions of the problem of heavy $n$-dimensional body motion in the Lagrange case
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1617
EP  - 1635
VL  - 202
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_11_a2/
LA  - en
ID  - SM_2011_202_11_a2
ER  - 
%0 Journal Article
%A A. V. Belyaev
%T Asymptotic behaviour of singular points of solutions of the problem of heavy $n$-dimensional body motion in the Lagrange case
%J Sbornik. Mathematics
%D 2011
%P 1617-1635
%V 202
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2011_202_11_a2/
%G en
%F SM_2011_202_11_a2
A. V. Belyaev. Asymptotic behaviour of singular points of solutions of the problem of heavy $n$-dimensional body motion in the Lagrange case. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1617-1635. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a2/

[1] S. V. Manakov, “Note on the integration of Euler's equations of the dynamics of an $n$-dimensional rigid body”, Funct. Anal. Appl., 10:4 (1976), 328–329 | DOI | MR | Zbl | Zbl

[2] A. S. Miščenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl | Zbl

[3] M. Adler, P. van Moerbeke, “Completely integrable systems, Euclidean Lie algebras, and curves”, Adv. in Math., 38:3 (1980), 267–317 | DOI | MR | Zbl

[4] M. Adler, P. van Moerbeke, “Linearization of Hamiltonian systems, Jacobi varieties and representation theory”, Adv. in Math., 38:3 (1980), 318–379 | DOI | MR | Zbl

[5] T. Ratiu, P. van Moerbeke, “The Lagrange rigid body motion”, Ann. Inst. Fourier (Grenoble), 32:1 (1982), 211–234 | DOI | MR | Zbl

[6] Yu. A. Arkhangelskii, Analiticheskaya dinamika tverdogo tela, Nauka, M., 1977 | MR

[7] A. V. Borisov, I. S. Mamaev, Sovremennye metody teorii integriruemykh sistem, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003 | MR | Zbl

[8] V. Dragović, B. Gajić, “An $L$–$A$ pair for the Hess–Apel'rot system and a new integrable case for the Euler–Poisson equations on $\operatorname{so}(4)\times \operatorname{so}(4)$”, Proc. Roy. Soc. Edinburgh Sect. A, 131:4 (2001), 845–855 | DOI | MR | Zbl

[9] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl | Zbl

[10] A. V. Beljaev, “On the motion of a multidimensional body with fixed point in a gravitational field”, Math. USSR-Sb., 42:3 (1982), 413–418 | DOI | MR | Zbl

[11] A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-Shansky, “The Kowalewski top 99 years later: A Lax pair, generalizations and explicit solutions”, Comm. Math. Phys., 122:2 (1989), 321–354 | DOI | MR | Zbl

[12] A. Belyaev, “The factorization of the flow defined by the Euler–Poisson equations”, Methods Funct. Anal. Topology, 7:4 (2001), 18–30 | MR | Zbl

[13] A. V. Belyaev, “Entire solutions of the Euler–Poisson equations”, Ukrainian Math. J., 56:5 (2004), 817–829 | DOI | MR | Zbl

[14] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1989 | MR | MR | Zbl | Zbl

[15] A. A. Kirillov, Elements of the theory of representations, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl | Zbl

[16] J. Marsden, A. Weinstein, “Reduction of symplectic manifolds with symmetry”, Rep. Mathematical Phys., 5:1 (1974), 121–130 | DOI | MR | Zbl

[17] A. V. Bocharov, A. M. Vinogradov, “The Hamiltonian form of mechanics with friction, non-holonomic mechanics, invariant mechanics, the theory of refraction and impact”, appendix II: A. M. Vinogradov, B. A. Kupershmidt, “The structures of Hamiltonian mechanics”, Russian Math. Surveys, 32:4 (1977), 235–241 | DOI | MR | Zbl | Zbl

[18] A. S. Mishchenko, “Integral geodesics of a flow on Lie groups”, Funct. Anal. Appl., 4:3 (1970), 232–235 | DOI | MR | Zbl

[19] T. Ratiu, “Euler–Poisson equations on Lie algebras and the $N$-dimensional heavy rigid body”, Amer. J. Math., 104:2 (1982), 409–448 | DOI | MR | Zbl

[20] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl | Zbl

[21] M. Rais, “L'indice des produits semi-directs $E\times_\rho g$.”, C. R. Acad. Sci. Paris Sér. A-B, 287:4 (1978), 195–197 | MR | Zbl

[22] A. V. Bolsinov, “Compatible Poisson brackets on lie algebras and completeness of families of functions in involution”, Math. USSR-Izv., 38:1 (1992), 69–90 | DOI | MR | Zbl | Zbl

[23] A. V. Bolsinov, A. V. Borisov, “Compatible Poisson Brackets on Lie Algebras”, Math. Notes, 72:1 (2002), 10–30 | DOI | MR | Zbl