@article{SM_2011_202_11_a1,
author = {A. A. Ardentov and Yu. L. Sachkov},
title = {Extremal trajectories in a~nilpotent {sub-Riemannian} problem on the {Engel} group},
journal = {Sbornik. Mathematics},
pages = {1593--1615},
year = {2011},
volume = {202},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a1/}
}
A. A. Ardentov; Yu. L. Sachkov. Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1593-1615. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a1/
[1] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[2] A. Bellaiche, “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry (Paris, France, 1992), Progr. Math., 144, Birkhäuser, Basel, 1996, 1–78 | MR | Zbl
[3] A. A. Agrachev, A. V. Sarychev, “Filtrations of a Lie algebra of vector fields and nilpoint approximation of controlled systems”, Soviet Math. Dokl., 36:1 (1988), 104–108 | MR | Zbl
[4] H. Hermes, “Nilpotent and high-order approximations of vector field systems”, SIAM Rev., 33:2 (1991), 238–264 | DOI | MR | Zbl
[5] A. M. Vershik, V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems. VII, Encycl. Math. Sci., 16, 1994, 1–81 | MR | Zbl
[6] U. Boscain, F. Rossi, “Invariant Carnot–Caratheodory metrics on $S^3$, $\operatorname{SO}(3)$, $\operatorname{SL}(2)$ and lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl
[7] O. Myasnichenko, “Nilpotent $(3,6)$ sub-Riemannian problem”, J. Dynam. Control Systems, 8:4 (2002), 573–597 | DOI | MR | Zbl
[8] O. Myasnichenko, “Nilpotent $(n,n(n+1)/2)$ sub-Riemannian problem”, J. Dyn. Control Syst., 12:1 (2006), 87–95 | DOI | MR | Zbl
[9] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | MR | Zbl
[10] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | Zbl
[11] F. Monroy-Pérez, A. Anzaldo-Meneses, “The step-2 nilpotent $(n,n(n+1)/2)$ sub-Riemannian geometry”, J. Dyn. Control Syst., 12:2 (2006), 185–216 | DOI | MR | Zbl
[12] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl
[13] A. A. Agrachev, “Exponential mappings for contact sub-Riemannian structures”, J. Dynam. Control Systems, 2:3 (1996), 321–358 | DOI | MR | Zbl
[14] A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl
[15] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005 | Zbl
[16] J. P. Laumond, Robot motion planning and control, Lecture Notes in Control and Inform. Sci., 229, Springer-Verlag, Berlin, 1998 | MR
[17] Yu. L. Sachkov, “Maxwell strata in the Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl
[18] Yu. L. Sachkov, “Conjugate points in Euler's elastic problem”, J. Dyn. Control Syst., 14:3 (2008), 409–439 | DOI | MR | Zbl
[19] Yu. L. Sachkov, Upravlyaemost i simmetrii invariantnykh sistem na gruppakh Li i odnorodnykh prostranstvakh, Fizmatlit, M., 2007 | Zbl
[20] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Selected works. Vol. 4. The mathematical theory of optimal processes, Classics Soviet Math., Gordon Breach, New York, 1986 | MR | MR | Zbl | Zbl
[21] L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti, Universitat Autónoma de Barcelona, Barcelona, 1993 | MR | Zbl
[22] A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl
[23] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[24] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, New York, 1962 | MR | Zbl | Zbl
[25] A. A. Ardentov, Yu. L. Sachkov, “Solution to Euler's elastic problem”, Autom. Remote Control, 70:4 (2009), 633–643 | DOI | MR | Zbl