Regularized and generalized solutions of infinite-dimensional stochastic problems
Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1565-1592

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with solutions of Cauchy's problem for stochastic differential-operator equations in separable Hilbert spaces. Special emphasis is placed on the case when the operator coefficient of the equation is not a generator of a $C_0$-class semigroup, but rather generates some regularized semigroup. Regularized solutions of equations in the Itô form with a Wiener process as an inhomogeneity and generalized solutions of equations with white noise are constructed in various spaces of abstract distributions. Bibliography: 23 titles.
Keywords: regularized semigroup of operators, abstract distribution, generalized solution, Wiener process, white noise.
@article{SM_2011_202_11_a0,
     author = {M. A. Alshanskiy and I. V. Mel'nikova},
     title = {Regularized and generalized solutions of infinite-dimensional stochastic problems},
     journal = {Sbornik. Mathematics},
     pages = {1565--1592},
     publisher = {mathdoc},
     volume = {202},
     number = {11},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_11_a0/}
}
TY  - JOUR
AU  - M. A. Alshanskiy
AU  - I. V. Mel'nikova
TI  - Regularized and generalized solutions of infinite-dimensional stochastic problems
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1565
EP  - 1592
VL  - 202
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_11_a0/
LA  - en
ID  - SM_2011_202_11_a0
ER  - 
%0 Journal Article
%A M. A. Alshanskiy
%A I. V. Mel'nikova
%T Regularized and generalized solutions of infinite-dimensional stochastic problems
%J Sbornik. Mathematics
%D 2011
%P 1565-1592
%V 202
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_11_a0/
%G en
%F SM_2011_202_11_a0
M. A. Alshanskiy; I. V. Mel'nikova. Regularized and generalized solutions of infinite-dimensional stochastic problems. Sbornik. Mathematics, Tome 202 (2011) no. 11, pp. 1565-1592. http://geodesic.mathdoc.fr/item/SM_2011_202_11_a0/