The continuity of the output entropy of positive maps
Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1537-1564 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Global and local continuity conditions for the output von Neumann entropy for positive maps between Banach spaces of trace-class operators in separable Hilbert spaces are obtained. Special attention is paid to completely positive maps: infinite dimensional quantum channels and operations. It is shown that as a result of some specific properties of the von Neumann entropy (as a function on the set of density operators) several results on the output entropy of positive maps can be obtained, which cannot be derived from the general properties of entropy type functions. In particular, it is proved that global continuity of the output entropy of a positive map follows from its finiteness. A characterization of positive linear maps preserving continuity of the entropy (in the following sense: continuity of the entropy on an arbitrary subset of input operators implies continuity of the output entropy on this subset) is obtained. A connection between the local continuity properties of two completely positive complementary maps is considered. Bibliography: 21 titles.
Keywords: von Neumann entropy, positive trace-class operator, quantum operation, quantum channel, $\mathrm{PCE}$-property of positive maps.
@article{SM_2011_202_10_a5,
     author = {M. E. Shirokov},
     title = {The continuity of the output entropy of positive maps},
     journal = {Sbornik. Mathematics},
     pages = {1537--1564},
     year = {2011},
     volume = {202},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a5/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - The continuity of the output entropy of positive maps
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1537
EP  - 1564
VL  - 202
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_10_a5/
LA  - en
ID  - SM_2011_202_10_a5
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T The continuity of the output entropy of positive maps
%J Sbornik. Mathematics
%D 2011
%P 1537-1564
%V 202
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2011_202_10_a5/
%G en
%F SM_2011_202_10_a5
M. E. Shirokov. The continuity of the output entropy of positive maps. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1537-1564. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a5/

[1] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[2] A. S. Holevo, Statistical structure of quantum theory, Lect. Notes Phys. Monogr., 67, Springer-Verlag, Berlin, 2001 | MR | Zbl

[3] A. S. Kholevo, Kvantovye sistemy, kanaly, informatsiya, MTsNMO, M., 2010

[4] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR

[5] M. E. Shirokov, A. S. Holevo, “On approximation of infinite-dimensional quantum channels”, Probl. Inf. Transm., 44:2 (2008), 73–90 | DOI | MR

[6] D. Leung, G. Smith, “Continuity of quantum channel capacities”, Comm. Math. Phys., 292:1 (2009), 201–215 | DOI | MR | Zbl

[7] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, Springer-Verlag, New York–Heidelberg, 1979 | MR | MR | Zbl | Zbl

[8] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[9] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 1-e izd., Fizmatlit, M., 2004; 2-е изд., испр и доп.; Физматлит, М., 2007 | Zbl

[10] C. King, K. Matsumoto, M. Nathanson, M. B. Ruskai, “Properties of conjugate channels with applications to additivity and multiplicativity”, Markov Process. Related Fields, 13:2 (2007), 391–423 | MR | Zbl

[11] A. S. Holevo, “Complementary channels and the additivity problem”, Theory Probab. Appl., 51:1 (2007), 92–100 | DOI | MR | Zbl

[12] G. Lindblad, “Expectations and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[13] M. Ohya, D. Petz, Quantum entropy and its use, Texts Monogr. Phys., Springer-Verlag, Berlin, 1993 | MR | Zbl

[14] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 ; 71, no. 1, 2007 | MR | Zbl | MR | Zbl

[15] M. E. Shirokov, “Entropy characteristics of subsets of states. I”, Izv. Math., 70:6 (2006), 1265–1292 ; “II”, 71:1 (2007), 181–218 | DOI | DOI | MR | MR | Zbl | Zbl

[16] M. E. Shirokov, “Continuity of the von Neumann entropy”, Comm. Math. Phys., 296:3 (2010), 625–654 | DOI | MR | Zbl

[17] A. S. Holevo, “Entanglement-breaking channels in infinite dimensions”, Probl. Inf. Transm., 44:3 (2008), 171–184 | DOI | MR | Zbl

[18] M. Horodecki, P. W. Shor, M. B. Ruskai, “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 | DOI | MR | Zbl

[19] M. E. Shirokov, The output entropy of quantum channels and operations, arXiv: 1002.0230

[20] M. E. Shirokov, The convex closure of the output entropy of infinite dimensional channels and the additivity problem, arXiv: quant-ph/0608090

[21] K. M. R. Audenaert, S. L. Braunstein, “On strong superadditivity of the entanglement of formation”, Comm. Math. Phys., 246:3 (2004), 443–452 | DOI | MR | Zbl