On the index of elliptic operators for the group of dilations
Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1505-1536 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate nonlocal operators associated with the operators of compression and expansion. We obtain an ellipticity condition, which implies that the problem has the Fredholm property, compute the index, and study how the index depends on the exponent of the Sobolev space in which the problem is considered. Bibliography: 15 titles.
Keywords: operators of compression and expansion, nonlocal theory, ellipticity, finiteness theorem, index.
@article{SM_2011_202_10_a4,
     author = {A. Yu. Savin and B. Yu. Sternin},
     title = {On the index of elliptic operators for the group of dilations},
     journal = {Sbornik. Mathematics},
     pages = {1505--1536},
     year = {2011},
     volume = {202},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a4/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - On the index of elliptic operators for the group of dilations
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1505
EP  - 1536
VL  - 202
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_10_a4/
LA  - en
ID  - SM_2011_202_10_a4
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%T On the index of elliptic operators for the group of dilations
%J Sbornik. Mathematics
%D 2011
%P 1505-1536
%V 202
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2011_202_10_a4/
%G en
%F SM_2011_202_10_a4
A. Yu. Savin; B. Yu. Sternin. On the index of elliptic operators for the group of dilations. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1505-1536. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a4/

[1] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic theory and noncommutative geometry. Nonlocal elliptic operators, Oper. Theory Adv. Appl., 183, Birkhäuser, Basel, 2008 | MR | Zbl

[2] A. Antonevich, M. Belousov, A. Lebedev, Functional differential equations. II. $C^*$-Applications. Parts 1, 2, Pitman Monogr. Surveys Pure Appl. Math., 94–95, Longman, Harlow, 1998 | MR | Zbl

[3] D. Perrot, “Localization over complex-analytic groupoids and conformal renormalization”, J. Noncommut. Geom., 3:2 (2009), 289–325 | DOI | MR | Zbl

[4] G. Luke, “Pseudodifferential operators on Hilbert bundles”, J. Differential Equations, 12:3 (1972), 566–589 | DOI | MR | Zbl

[5] A. Yu. Savin, “Ob indekse nelokalnykh ellipticheskikh operatorov, otvechayuschikh neizometricheskomu diffeomorfizmu”, Matem. zametki, 90:5 (2011), 712–726

[6] B. Sternin, “Elliptic morphisms (riggings of elliptic operators) for submanifolds with singularities”, Soviet Math. Dokl., 12 (1971), 1338–1343 | MR | Zbl

[7] N. I. Radbel, “Rasscheplenie spektra i normalnye tochki lineinogo puchka operatorov v $B$-prostranstvakh”, Vestn. KharGU, Ser. mekh.-matem., 39 (1974), 17–20 | MR | Zbl

[8] M. F. Atiyah, $K$-theory, Benjamin, New York–Amsterdam, 1967 | MR | MR | Zbl | Zbl

[9] L. Hörmander, The analysis of linear partial differential operators, v. 3, Grundlehren Math. Wiss., 274, Springer-Verlag, Berlin, 1985 | MR | MR | Zbl

[10] W. Zhang, Lectures on Chern–Weil theory and Witten deformations, Nankai Tracts Math., 4, World Scientific, River Edge, NJ, 2001 | MR | Zbl

[11] M. F. Atiyah, I. M. Singer, “The index of elliptic operators. I”, Ann. of Math. (2), 87 (1968), 484–530 | DOI | MR | MR | Zbl

[12] A. Antonevich, A. Lebedev, Functional differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman, Harlow, 1994 | MR | Zbl

[13] A. B. Antonevich, A. V. Lebedev, “Functional equations and functional operator equations. A $C^*$-algebraic approach.”, Amer. Math. Soc. Transl. Ser. 2, 199, Amer. Math. Soc., Providence, RI, 2000, 25–116 | MR | Zbl

[14] M. F. Atiyah, R. Bott, “On the periodicity theorem for complex vector bundles”, Acta Math., 112:1 (1964), 229–247 | DOI | MR | Zbl

[15] M. Pimsner, D. Voiculescu, “Exact sequences for $K$-groups and $\mathrm{Ext}$-groups of certain cross-product $C^{\ast}$-algebras”, J. Operator Theory, 4:1 (1980), 93–118 | MR | Zbl