Convergence of series of simple partial fractions in $L_p(\mathbb R)$
Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1493-1504
Cet article a éte moissonné depuis la source Math-Net.Ru
A necessary and sufficient condition for the series $\sum_{k=1}^\infty \frac{1}{t-z_k}$, $|z_k|, to converge in $L_p(\mathbb{R})$, $p>1$, is obtained. Bibliography: 5 titles.
Keywords:
Hardy's inequality, Dirichlet series.
Mots-clés : simple partial fractions, Fourier transform
Mots-clés : simple partial fractions, Fourier transform
@article{SM_2011_202_10_a3,
author = {I. R. Kayumov},
title = {Convergence of series of simple partial fractions in~$L_p(\mathbb R)$},
journal = {Sbornik. Mathematics},
pages = {1493--1504},
year = {2011},
volume = {202},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a3/}
}
I. R. Kayumov. Convergence of series of simple partial fractions in $L_p(\mathbb R)$. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1493-1504. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a3/
[1] V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | MR | Zbl
[2] V. I. Danchenko, “Convergence of simple partial fractions in $L_p(\mathbb R)$”, Sb. Math., 201:7 (2010), 985–997 | DOI | Zbl
[3] P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148 | DOI | MR | Zbl
[4] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl
[5] A. F. Leontev, Ryady eksponent, Nauka, M., 1976 | MR | Zbl