Convergence of series of simple partial fractions in~$L_p(\mathbb R)$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1493-1504
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A necessary and sufficient condition for the series $\sum_{k=1}^\infty \frac{1}{t-z_k}$, $|z_k|$, to converge in $L_p(\mathbb{R})$, $p>1$, is obtained.
Bibliography: 5 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Hardy's inequality, Dirichlet series.
Mots-clés : simple partial fractions, Fourier transform
                    
                  
                
                
                Mots-clés : simple partial fractions, Fourier transform
@article{SM_2011_202_10_a3,
     author = {I. R. Kayumov},
     title = {Convergence of series of simple partial fractions in~$L_p(\mathbb R)$},
     journal = {Sbornik. Mathematics},
     pages = {1493--1504},
     publisher = {mathdoc},
     volume = {202},
     number = {10},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a3/}
}
                      
                      
                    I. R. Kayumov. Convergence of series of simple partial fractions in~$L_p(\mathbb R)$. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1493-1504. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a3/
