Convergence of series of simple partial fractions in~$L_p(\mathbb R)$
Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1493-1504

Voir la notice de l'article provenant de la source Math-Net.Ru

A necessary and sufficient condition for the series $\sum_{k=1}^\infty \frac{1}{t-z_k}$, $|z_k|$, to converge in $L_p(\mathbb{R})$, $p>1$, is obtained. Bibliography: 5 titles.
Keywords: Hardy's inequality, Dirichlet series.
Mots-clés : simple partial fractions, Fourier transform
@article{SM_2011_202_10_a3,
     author = {I. R. Kayumov},
     title = {Convergence of series of simple partial fractions in~$L_p(\mathbb R)$},
     journal = {Sbornik. Mathematics},
     pages = {1493--1504},
     publisher = {mathdoc},
     volume = {202},
     number = {10},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a3/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - Convergence of series of simple partial fractions in~$L_p(\mathbb R)$
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1493
EP  - 1504
VL  - 202
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_10_a3/
LA  - en
ID  - SM_2011_202_10_a3
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T Convergence of series of simple partial fractions in~$L_p(\mathbb R)$
%J Sbornik. Mathematics
%D 2011
%P 1493-1504
%V 202
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_10_a3/
%G en
%F SM_2011_202_10_a3
I. R. Kayumov. Convergence of series of simple partial fractions in~$L_p(\mathbb R)$. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1493-1504. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a3/