Existence `in the large' of a~solution to the system of equations of large-scale ocean dynamics on a~manifold
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1463-1492
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A theorem is presented proving the unique solvability ‘in the large’ of the system of primitive equations on an arbitrary smooth oriented Riemannian manifold in a cylindrical domain. Namely, it is shown for an arbitrary interval of time $[0,T]$, in the $3$d domain $\Omega\equiv\Omega'\times[-h,0]$, where
$h=\mathrm{const}$ and $\Omega'$ is a compactly embedded subdomain of 
a $2$-manifold $\mathscr{M}$, for any viscosity coefficients $\mu,\nu,\mu_1,\nu_1>0$ and initial conditions
$\mathbf{u}_0\in\mathbf{W}_2^2(\Omega)$, 
$\displaystyle\int_{-h}^0\operatorname{div}\mathbf{u}_0\,dz=0$, 
and $\rho_0\in W_2^2(\Omega)$, there exists a unique generalized solution such that 
$\partial_z\mathbf{u} \in\mathbf{W}_2^1(Q_T)$, $\partial_z\rho \in W_2^1(Q_T)$ ($z$ is the vertical variable) and the norms $\|\mathbf{u}\|_{\mathbf{W}^1_2(\Omega)}$ and $\|\rho\|_{W^1_2(\Omega)}$ are continuous in $t$.
Bibliography: 12 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
primitive equations, ocean dynamics equations, nonlinear partial differential equations, a priori bounds, existence ‘in the large’.
                    
                    
                    
                  
                
                
                @article{SM_2011_202_10_a2,
     author = {A. V. Drutsa},
     title = {Existence `in the large' of a~solution to the system of equations of large-scale ocean dynamics on a~manifold},
     journal = {Sbornik. Mathematics},
     pages = {1463--1492},
     publisher = {mathdoc},
     volume = {202},
     number = {10},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/}
}
                      
                      
                    TY - JOUR AU - A. V. Drutsa TI - Existence `in the large' of a~solution to the system of equations of large-scale ocean dynamics on a~manifold JO - Sbornik. Mathematics PY - 2011 SP - 1463 EP - 1492 VL - 202 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/ LA - en ID - SM_2011_202_10_a2 ER -
A. V. Drutsa. Existence `in the large' of a~solution to the system of equations of large-scale ocean dynamics on a~manifold. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1463-1492. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/
