Existence `in the large' of a solution to the system of equations of large-scale ocean dynamics on a manifold
Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1463-1492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theorem is presented proving the unique solvability ‘in the large’ of the system of primitive equations on an arbitrary smooth oriented Riemannian manifold in a cylindrical domain. Namely, it is shown for an arbitrary interval of time $[0,T]$, in the $3$d domain $\Omega\equiv\Omega'\times[-h,0]$, where $h=\mathrm{const}$ and $\Omega'$ is a compactly embedded subdomain of a $2$-manifold $\mathscr{M}$, for any viscosity coefficients $\mu,\nu,\mu_1,\nu_1>0$ and initial conditions $\mathbf{u}_0\in\mathbf{W}_2^2(\Omega)$, $\displaystyle\int_{-h}^0\operatorname{div}\mathbf{u}_0\,dz=0$, and $\rho_0\in W_2^2(\Omega)$, there exists a unique generalized solution such that $\partial_z\mathbf{u} \in\mathbf{W}_2^1(Q_T)$, $\partial_z\rho \in W_2^1(Q_T)$ ($z$ is the vertical variable) and the norms $\|\mathbf{u}\|_{\mathbf{W}^1_2(\Omega)}$ and $\|\rho\|_{W^1_2(\Omega)}$ are continuous in $t$. Bibliography: 12 titles.
Keywords: primitive equations, ocean dynamics equations, nonlinear partial differential equations, a priori bounds, existence ‘in the large’.
@article{SM_2011_202_10_a2,
     author = {A. V. Drutsa},
     title = {Existence `in the large' of a~solution to the system of equations of large-scale ocean dynamics on a~manifold},
     journal = {Sbornik. Mathematics},
     pages = {1463--1492},
     year = {2011},
     volume = {202},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/}
}
TY  - JOUR
AU  - A. V. Drutsa
TI  - Existence `in the large' of a solution to the system of equations of large-scale ocean dynamics on a manifold
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1463
EP  - 1492
VL  - 202
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/
LA  - en
ID  - SM_2011_202_10_a2
ER  - 
%0 Journal Article
%A A. V. Drutsa
%T Existence `in the large' of a solution to the system of equations of large-scale ocean dynamics on a manifold
%J Sbornik. Mathematics
%D 2011
%P 1463-1492
%V 202
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/
%G en
%F SM_2011_202_10_a2
A. V. Drutsa. Existence `in the large' of a solution to the system of equations of large-scale ocean dynamics on a manifold. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1463-1492. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/

[1] J.-L. Lions , R. Temam, S. Wang, “On the equations of the large-scale ocean”, Nonlinearity, 5:5 (1992), 1007–1053 | DOI | MR | Zbl

[2] G. I. Marchuk, A. S. Sarkisyan, Mathematical modelling of ocean circulation, Springer-Verlag, Berlin, 1988 | MR | Zbl

[3] G. M. Kobelkov, “Existence of a solution “in the large” for ocean dynamics equations”, J. Math. Fluid Mech., 9:4 (2007), 588–610 | DOI | MR | Zbl

[4] G. M. Kobelkov, “Existence of a solution “in the large” for the 3D large-scale ocean dynamics equations”, C. R. Math. Acad. Sci. Paris, 343:4 (2006), 283–286 | DOI | MR | Zbl

[5] C. Cao, E. S. Titi, “Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics”, Ann. of Math. (2), 166:1 (2007), 245–267 | DOI | MR | Zbl

[6] A. V. Drutsa, “Existence “in the large” of a solution to primitive equations in a domain with uneven bottom”, Russian J. Numer. Anal. Math. Modelling, 24:6 (2009), 515–542 | DOI | MR | Zbl

[7] I. Kukavica, M. Ziane, “On the regularity of the primitive equations of the ocean”, Nonlinearity, 20:12 (2007), 2739–2753 | DOI | MR | Zbl

[8] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1992 | MR | MR | Zbl | Zbl

[9] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Grad. Texts in Math., 94, Springer-Verlag, New York–Berlin, 1983 | MR | MR | Zbl | Zbl

[10] R. Temam, M. Ziane, “Some mathematical problems in geophysical fluid dynamics”, Handbook of mathematical fluid dynamics, v. 3, North-Holland, Amsterdam, 2004, 535–658 | MR | Zbl

[11] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl

[12] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 ; S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | MR | Zbl