@article{SM_2011_202_10_a2,
author = {A. V. Drutsa},
title = {Existence `in the large' of a~solution to the system of equations of large-scale ocean dynamics on a~manifold},
journal = {Sbornik. Mathematics},
pages = {1463--1492},
year = {2011},
volume = {202},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/}
}
TY - JOUR AU - A. V. Drutsa TI - Existence `in the large' of a solution to the system of equations of large-scale ocean dynamics on a manifold JO - Sbornik. Mathematics PY - 2011 SP - 1463 EP - 1492 VL - 202 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/ LA - en ID - SM_2011_202_10_a2 ER -
A. V. Drutsa. Existence `in the large' of a solution to the system of equations of large-scale ocean dynamics on a manifold. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1463-1492. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a2/
[1] J.-L. Lions , R. Temam, S. Wang, “On the equations of the large-scale ocean”, Nonlinearity, 5:5 (1992), 1007–1053 | DOI | MR | Zbl
[2] G. I. Marchuk, A. S. Sarkisyan, Mathematical modelling of ocean circulation, Springer-Verlag, Berlin, 1988 | MR | Zbl
[3] G. M. Kobelkov, “Existence of a solution “in the large” for ocean dynamics equations”, J. Math. Fluid Mech., 9:4 (2007), 588–610 | DOI | MR | Zbl
[4] G. M. Kobelkov, “Existence of a solution “in the large” for the 3D large-scale ocean dynamics equations”, C. R. Math. Acad. Sci. Paris, 343:4 (2006), 283–286 | DOI | MR | Zbl
[5] C. Cao, E. S. Titi, “Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics”, Ann. of Math. (2), 166:1 (2007), 245–267 | DOI | MR | Zbl
[6] A. V. Drutsa, “Existence “in the large” of a solution to primitive equations in a domain with uneven bottom”, Russian J. Numer. Anal. Math. Modelling, 24:6 (2009), 515–542 | DOI | MR | Zbl
[7] I. Kukavica, M. Ziane, “On the regularity of the primitive equations of the ocean”, Nonlinearity, 20:12 (2007), 2739–2753 | DOI | MR | Zbl
[8] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1992 | MR | MR | Zbl | Zbl
[9] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Grad. Texts in Math., 94, Springer-Verlag, New York–Berlin, 1983 | MR | MR | Zbl | Zbl
[10] R. Temam, M. Ziane, “Some mathematical problems in geophysical fluid dynamics”, Handbook of mathematical fluid dynamics, v. 3, North-Holland, Amsterdam, 2004, 535–658 | MR | Zbl
[11] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl
[12] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 ; S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | MR | Zbl