Neighbourly polytopes with few vertices
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1441-1462
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A family of neighbourly polytopes in $\mathbb R^{2d}$ with $N=2d+4$ vertices is constructed. All polytopes in the family have a planar Gale diagram of a special type, namely, with exactly $d+3$ black points in convex position. These Gale diagrams are parametrized by $3$-trees (trees with a certain additional structure). For all polytopes in the family, the number of faces of dimension $m$ containing a given vertex $A$ depends only on $d$ and $m$.
Bibliography: 7 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
combinatorics of polytopes, combinatorics of a set of points, neighbourly polytopes, Gale diagrams.
                    
                    
                    
                  
                
                
                @article{SM_2011_202_10_a1,
     author = {R. A. Devyatov},
     title = {Neighbourly polytopes with few vertices},
     journal = {Sbornik. Mathematics},
     pages = {1441--1462},
     publisher = {mathdoc},
     volume = {202},
     number = {10},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a1/}
}
                      
                      
                    R. A. Devyatov. Neighbourly polytopes with few vertices. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1441-1462. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a1/
