Mots-clés : partition
@article{SM_2011_202_10_a0,
author = {A. S. Voynov},
title = {Self-affine polytopes. {Applications} to~functional equations and matrix theory},
journal = {Sbornik. Mathematics},
pages = {1413--1439},
year = {2011},
volume = {202},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_10_a0/}
}
A. S. Voynov. Self-affine polytopes. Applications to functional equations and matrix theory. Sbornik. Mathematics, Tome 202 (2011) no. 10, pp. 1413-1439. http://geodesic.mathdoc.fr/item/SM_2011_202_10_a0/
[1] M. Barnsley, Fractals everywhere, Academic Press, Boston, MA, 1988 | MR | Zbl
[2] Ch. A. Micchelli, H. Prautzsch, “Uniform refinement of curves”, Linear Algebra Appl., 114–115 (1989), 841–870 | DOI | MR | Zbl
[3] G. de Rham, “Sur une courbe plane”, J. Math. Pures Appl. (9), 35 (1956), 25–42 | MR | Zbl
[4] I. Daubechies, J. C. Lagarias, “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal., 23:4 (1992), 1031–1079 | DOI | MR | Zbl
[5] D. Collela, Ch. Heil, “Characterizations of scaling functions: continuous solutions”, SIAM J. Matrix Anal. Appl., 15:2 (1994), 496–518 | DOI | MR | Zbl
[6] L. F. Villemoes, “Wavelet analysis of refinement equations”, SIAM J. Math. Anal., 25:5 (1994), 1433–1460 | DOI | MR | Zbl
[7] V. Yu. Protasov, “Fractal curves and wavelets”, Izv. Math., 70:5 (2006), 975–1013 | DOI | MR | Zbl
[8] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Amer. Math. Soc., Providence, RI, 2011 | MR | MR | Zbl | Zbl
[9] G. Deslauriers, S. Dubuc, “Symmetric iterative interpolation processes”, Constr. Approx., 5:1 (1989), 49–68 | DOI | MR | Zbl
[10] N. Dyn, D. Levin, “Interpolating subdivision schemes for the generation of curves and surfaces”, Multivariate approximation and interpolation (Duisburg, 1989), Internat. Ser. Numer. Math., 94, Birkhaüser, Basel, 1990, 91–106 | MR | Zbl
[11] Y. Wang, “Two-scale dilation equations and the mean spectral radius”, Random Comput. Dynam., 4:1 (1996), 49–72 | MR | Zbl
[12] R.-Q. Jia, “Subdivision schemes in $L_p$ spaces”, Adv. Comput. Math., 3:4 (1995), 309–341 | DOI | MR | Zbl
[13] K.-S. Lau, J. Wang, “Characterization of $L^p$-solutions for the two-scale dilation equations”, SIAM J. Math. Anal., 26:4 (1995), 1018–1046 | DOI | MR | Zbl
[14] G. Derfel, N. Dyn, D. Levin, “Generalized refinement equations and subdivision processes”, J. Approx. Theory, 80:2 (1995), 272–297 | DOI | MR | Zbl
[15] C. A. Cabrelli, Ch. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[16] V. Yu. Protasov, “The generalized joint spectral radius. A geometric approach”, Izv. Math., 61:5 (1997), 995–1030 | DOI | MR | Zbl
[17] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl
[18] B. M. Hambly, J. Kigami, T. Kumagai, “Multifractal formalisms for the local spectral and walk dimensions”, Math. Proc. Cambridge Philos. Soc., 132:3 (2002), 555–571 | DOI | MR | Zbl
[19] V. Yu. Protasov, “Extremal $L_p$-norms of linear operators and self-similar functions”, Linear Algebra Appl., 428:10 (2008), 2339–2356 | DOI | MR | Zbl
[20] H. T. Croft, K. J. Falconer, R. K. Guy, Unsolved problems in geometry, Problem Books in Math., Springer-Verlag, New York, 1991 | MR | Zbl
[21] J. Tolke, J. M. Wills, Contributions to geometry (Siegen, 1978), Birkhaüser, Basel, 1979 | MR | Zbl
[22] E. Hertel C. Richter, “Self-affine convex polygons”, SIAM J. Math. Anal., 98:1–2 (2010), 79–89 | DOI | MR | Zbl
[23] D.-X. Zhou, “Self-similar lattice tilings and subdivision schemes”, SIAM J. Math. Anal., 33:1 (2001), 1–15 | DOI | MR | Zbl
[24] C. Richter, “Self-affine convex discs are polygons”, Beitr. Algebra Geom., Online First | DOI
[25] A. Voynov, “Self-affine polyhedra”, Proc. Steklov Inst. Math. (to appear)
[26] G.-C. Rota, W. G. Strang, “A note on the joint spectral radius”, Nederl. Akad. Wetensch. Proc. Ser. A, 63 (1960), 379–381 | MR | Zbl
[27] M. A. Berger, Y. Wang, “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl
[28] V. Blondel, S. Gaubert, J. N. Tsitsiklis, “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Automat. Control, 45:9 (2000), 1762–1765 | DOI | MR | Zbl
[29] V. Yu. Protasov, “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundament. i prikl. matem., 2:1 (1996), 205–231 | MR | Zbl
[30] G. Gripenberg, “Computing the joint spectral radius”, Linear Algebra Appl., 234 (1996), 43–60 | DOI | MR | Zbl
[31] V. Yu. Protasov, “On the regularity of de Rham curves”, Izv. Math., 68:3 (2004), 567–606 | DOI | MR | Zbl
[32] I. A. Sheipak, “On the construction and some properties of self-similar functions in the spaces $L_p[0,1]$”, Math. Notes, 81:6 (2007), 827–839 | DOI | MR | Zbl
[33] I. Daubechies, J. C. Lagarias, “Corrigendum/addendum to: Sets of matrices all infinite products of which converge”, Linear Algebra Appl., 327:1–3 (2001), 69–83 | DOI | MR | Zbl
[34] R. A. Horn, Ch. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985 | MR | MR | Zbl | Zbl
[35] H. Furstenberg, “Noncommuting random products”, Trans. Amer. Math. Soc., 108 (1963), 377–428 | DOI | MR | Zbl
[36] H. Furstenberg, H. Kesten, “Products of random matrices”, Ann. Math. Statist., 31:2 (1960), 457–469 | DOI | MR | Zbl
[37] V. Yu. Protasov, “Semigroups of non-negative matrices”, Russian Math. Surveys, 65:6 (2010), 1186–1188 | DOI | MR | Zbl
[38] R.-Q. Jia, D.-X. Zhou, “Convergence of subdivision schemes associated with nonnegative masks”, SIAM J. Matrix Anal. Appl., 21:2 (1999), 418–430 | DOI | MR | Zbl
[39] V. Protasov, “Refinement equations with nonnegative coefficients”, J. Fourier Anal. Appl., 6:1 (2000), 55–78 | DOI | MR | Zbl