Mots-clés : orthogonal polynomials
@article{SM_2010_201_9_a4,
author = {D. N. Tulyakov},
title = {Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients},
journal = {Sbornik. Mathematics},
pages = {1355--1402},
year = {2010},
volume = {201},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/}
}
TY - JOUR AU - D. N. Tulyakov TI - Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients JO - Sbornik. Mathematics PY - 2010 SP - 1355 EP - 1402 VL - 201 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/ LA - en ID - SM_2010_201_9_a4 ER -
D. N. Tulyakov. Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients. Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1355-1402. http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/
[1] P. A. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[2] M. Plancherel, W. Rotach, “Sur les valeurs asymptotiques des polynomes d'Hermite $H_n(x)=(-I)^n e^{\frac{x^2}{2}}\frac{d^n}{dx^n}\bigl(e^{-\frac{x^2}{2}}\bigr)$”, Comment. Math. Helv., 1:1 (1929), 227–254 | DOI | MR | Zbl
[3] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl
[4] D. S. Lubinsky, Strong asymptotics for extremal errors and polynomials associated with Erdös-type weights, Pitman Res. Notes Math. Ser., 202, Longman Scientific and Technical, Harlow, NY; Wiley, New York, 1989 | MR | Zbl
[5] E. A. Rakhmanov, “Strong asymptotics for orthogonal polynomials”, Methods of approximation theory in complex analysis and mathematical physics (Leningrad, 1991), Lecture Notes in Math., 1550, Springer-Verlag, Berlin, 1993, 71–97 | DOI | MR | Zbl
[6] V. Totik, Weighted approximation with varying weight, Lecture Notes in Math., 1569, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl
[7] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[8] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | MR | Zbl
[9] S. P. Suetin, “Uniform convergence of Pade diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373 | DOI | MR | Zbl
[10] J. Baik, P. Deift, K. T.-R. McLaughlin, P. Miller, X. Zhou, “Optimal tail estimates for directed last passage site percolation with geometric random variables”, Adv. Theor. Math. Phys., 5:6 (2001), 1207–1250 | MR | Zbl
[11] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl
[12] S. Kamvissis, K. D. T.-R. McLaughlin, P. D. Miller, Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation, Ann. of Math. Stud., 154, Princeton Univ. Press, Princeton, NJ, 2003 | MR | Zbl
[13] A. I. Aptekarev, W. Van Assche, “Scalar and matrix Riemann–Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight”, J. Approx. Theory, 129:2 (2004), 129–166 | DOI | MR | Zbl
[14] S. P. Suetin, “Strong asymptotics of polynomials orthogonal with respect to a complex weight”, Sb. Math., 200:1 (2009), 77–93 | DOI | MR | Zbl
[15] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl
[16] V. Lysov, F. Wielonsky, “Strong asymptotics for multiple Laguerre polynomials”, Constr. Approx., 28:1 (2008), 61–111 | DOI | MR | Zbl
[17] A. Aptekarev, R. Khabibullin, “Asymptotic expansions for polynomials orthogonal with respect to a complex non-constant weight function”, Trans. Moscow Math. Soc., 2007, 1–37 | MR | Zbl
[18] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl
[19] I. I. Sharapudinov, “Asymptotic properties of orthogonal Hahn polynomials in a discrete variable”, Math. USSR-Sb., 68:1 (1991), 111–132 | DOI | MR | Zbl | Zbl
[20] I. I. Sharapudinov, “Nekotorye svoistva ortogonalnykh mnogochlenov Meiksnera”, Matem. zametki, 47:3 (1990), 135–137 | MR | Zbl
[21] I. I. Sharapudinov, “Asymptotics and weighted estimates of meixner polynomials orthogonal on the gird $\{0,\delta,2\delta,\dots\}$”, Math. Notes, 62:4 (1997), 501–512 | DOI | MR | Zbl
[22] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, P. D. Miller, Discrete orthogonal polynomials. Asymptotics and applications, Ann. of Math. Stud., 164, Princeton Univ. Press, Princeton, NJ, 2007 | MR | Zbl
[23] V. N. Sorokin, “Generalized Pollaczek polynomials”, Sb. Math., 200:4 (2009), 577–595 | DOI | MR | Zbl
[24] J. S. Geronimo, O. Bruno, W. Van Assche, “WKB and turning point theory for second-order difference equations”, Spectral methods for operators of mathematical physics (Bedlewo, Poland, 2002), Oper. Theory Adv. Appl., 154, Basel, Birkhäuser, 2004, 101–138 | MR | Zbl
[25] A. I. Aptekarev, “Asymptotics of orthogonal polynomials in a neighborhood of the endpoints of the interval of orthogonality”, Russian Acad. Sci. Sb. Math., 76:1 (1993), 35–50 | DOI | MR | Zbl | Zbl
[26] D. N. Tulyakov, “Local asymptotics of the ratio of orthogonal polynomials in the neighbourhood of an end-point of the support of the orthogonality measure”, Sb. Math., 192:2 (2001), 299–321 | DOI | MR | Zbl
[27] D. N. Tulyakov, “Difference equations having bases with powerlike growth which are perturbed by a spectral parameter”, Sb. Math., 200:5 (2009), 753–781 | DOI | MR | Zbl