Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients
Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1355-1402 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behaviour of solutions of difference equations with respect to the variable $n$ with spectral parameter $x$ is investigated. A new method for finding asymptotic expansions for basis solutions in overlapping domains of the $(n,x)$-space which extend to infinity is proposed. In principle, matching the expansions in the intersection of these domains makes it possible to determine the global asymptotic picture of the behaviour of solutions of equations in the complex plane of the spectral parameter $x$ for suitable scaling depending on $n$. The potential of the method is demonstrated using the examples of the Hermite and Meixner polynomials. Bibliography: 27 titles.
Keywords: recurrence relations, asymptotic behaviour of solutions of difference equations, Hermite polynomials, Meixner polynomials.
Mots-clés : orthogonal polynomials
@article{SM_2010_201_9_a4,
     author = {D. N. Tulyakov},
     title = {Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1355--1402},
     year = {2010},
     volume = {201},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/}
}
TY  - JOUR
AU  - D. N. Tulyakov
TI  - Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1355
EP  - 1402
VL  - 201
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/
LA  - en
ID  - SM_2010_201_9_a4
ER  - 
%0 Journal Article
%A D. N. Tulyakov
%T Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients
%J Sbornik. Mathematics
%D 2010
%P 1355-1402
%V 201
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/
%G en
%F SM_2010_201_9_a4
D. N. Tulyakov. Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients. Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1355-1402. http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/

[1] P. A. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[2] M. Plancherel, W. Rotach, “Sur les valeurs asymptotiques des polynomes d'Hermite $H_n(x)=(-I)^n e^{\frac{x^2}{2}}\frac{d^n}{dx^n}\bigl(e^{-\frac{x^2}{2}}\bigr)$”, Comment. Math. Helv., 1:1 (1929), 227–254 | DOI | MR | Zbl

[3] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl | Zbl

[4] D. S. Lubinsky, Strong asymptotics for extremal errors and polynomials associated with Erdös-type weights, Pitman Res. Notes Math. Ser., 202, Longman Scientific and Technical, Harlow, NY; Wiley, New York, 1989 | MR | Zbl

[5] E. A. Rakhmanov, “Strong asymptotics for orthogonal polynomials”, Methods of approximation theory in complex analysis and mathematical physics (Leningrad, 1991), Lecture Notes in Math., 1550, Springer-Verlag, Berlin, 1993, 71–97 | DOI | MR | Zbl

[6] V. Totik, Weighted approximation with varying weight, Lecture Notes in Math., 1569, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[7] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl

[8] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | MR | Zbl

[9] S. P. Suetin, “Uniform convergence of Pade diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373 | DOI | MR | Zbl

[10] J. Baik, P. Deift, K. T.-R. McLaughlin, P. Miller, X. Zhou, “Optimal tail estimates for directed last passage site percolation with geometric random variables”, Adv. Theor. Math. Phys., 5:6 (2001), 1207–1250 | MR | Zbl

[11] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl

[12] S. Kamvissis, K. D. T.-R. McLaughlin, P. D. Miller, Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation, Ann. of Math. Stud., 154, Princeton Univ. Press, Princeton, NJ, 2003 | MR | Zbl

[13] A. I. Aptekarev, W. Van Assche, “Scalar and matrix Riemann–Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight”, J. Approx. Theory, 129:2 (2004), 129–166 | DOI | MR | Zbl

[14] S. P. Suetin, “Strong asymptotics of polynomials orthogonal with respect to a complex weight”, Sb. Math., 200:1 (2009), 77–93 | DOI | MR | Zbl

[15] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl

[16] V. Lysov, F. Wielonsky, “Strong asymptotics for multiple Laguerre polynomials”, Constr. Approx., 28:1 (2008), 61–111 | DOI | MR | Zbl

[17] A. Aptekarev, R. Khabibullin, “Asymptotic expansions for polynomials orthogonal with respect to a complex non-constant weight function”, Trans. Moscow Math. Soc., 2007, 1–37 | MR | Zbl

[18] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl

[19] I. I. Sharapudinov, “Asymptotic properties of orthogonal Hahn polynomials in a discrete variable”, Math. USSR-Sb., 68:1 (1991), 111–132 | DOI | MR | Zbl | Zbl

[20] I. I. Sharapudinov, “Nekotorye svoistva ortogonalnykh mnogochlenov Meiksnera”, Matem. zametki, 47:3 (1990), 135–137 | MR | Zbl

[21] I. I. Sharapudinov, “Asymptotics and weighted estimates of meixner polynomials orthogonal on the gird $\{0,\delta,2\delta,\dots\}$”, Math. Notes, 62:4 (1997), 501–512 | DOI | MR | Zbl

[22] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, P. D. Miller, Discrete orthogonal polynomials. Asymptotics and applications, Ann. of Math. Stud., 164, Princeton Univ. Press, Princeton, NJ, 2007 | MR | Zbl

[23] V. N. Sorokin, “Generalized Pollaczek polynomials”, Sb. Math., 200:4 (2009), 577–595 | DOI | MR | Zbl

[24] J. S. Geronimo, O. Bruno, W. Van Assche, “WKB and turning point theory for second-order difference equations”, Spectral methods for operators of mathematical physics (Bedlewo, Poland, 2002), Oper. Theory Adv. Appl., 154, Basel, Birkhäuser, 2004, 101–138 | MR | Zbl

[25] A. I. Aptekarev, “Asymptotics of orthogonal polynomials in a neighborhood of the endpoints of the interval of orthogonality”, Russian Acad. Sci. Sb. Math., 76:1 (1993), 35–50 | DOI | MR | Zbl | Zbl

[26] D. N. Tulyakov, “Local asymptotics of the ratio of orthogonal polynomials in the neighbourhood of an end-point of the support of the orthogonality measure”, Sb. Math., 192:2 (2001), 299–321 | DOI | MR | Zbl

[27] D. N. Tulyakov, “Difference equations having bases with powerlike growth which are perturbed by a spectral parameter”, Sb. Math., 200:5 (2009), 753–781 | DOI | MR | Zbl