Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients
Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1355-1402
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic behaviour of solutions of difference equations with respect to the variable $n$ with spectral parameter $x$ is investigated. A new method for finding asymptotic expansions for basis solutions in overlapping domains of the $(n,x)$-space which extend to infinity is proposed. In principle, matching the expansions in the intersection of these domains makes it possible to determine the global asymptotic picture of the behaviour of solutions of equations in the complex plane of the spectral parameter $x$ for suitable scaling depending on $n$. The potential of the method is demonstrated using the examples of the Hermite and Meixner polynomials.
Bibliography: 27 titles.
Keywords:
recurrence relations, asymptotic behaviour of solutions of difference equations, Hermite polynomials, Meixner polynomials.
Mots-clés : orthogonal polynomials
Mots-clés : orthogonal polynomials
@article{SM_2010_201_9_a4,
author = {D. N. Tulyakov},
title = {Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients},
journal = {Sbornik. Mathematics},
pages = {1355--1402},
publisher = {mathdoc},
volume = {201},
number = {9},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/}
}
TY - JOUR AU - D. N. Tulyakov TI - Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients JO - Sbornik. Mathematics PY - 2010 SP - 1355 EP - 1402 VL - 201 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/ LA - en ID - SM_2010_201_9_a4 ER -
D. N. Tulyakov. Plancherel-Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients. Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1355-1402. http://geodesic.mathdoc.fr/item/SM_2010_201_9_a4/