@article{SM_2010_201_9_a3,
author = {D. V. Trushin},
title = {Splitting fields and general differential {Galois} theory},
journal = {Sbornik. Mathematics},
pages = {1323--1353},
year = {2010},
volume = {201},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_9_a3/}
}
D. V. Trushin. Splitting fields and general differential Galois theory. Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1323-1353. http://geodesic.mathdoc.fr/item/SM_2010_201_9_a3/
[1] E. R. Kolchin, “Constrained extensions of differential fields”, Advances in Math., 12:2 (1974), 141–170 | DOI | MR | Zbl
[2] S. Shelah, “Uniqueness and characterization of prime models over sets for totally transcendental first-order theories”, J. Symbolic Logic, 37:1 (1972), 107–113 | DOI | MR | Zbl
[3] B. Poizat, Cours de théorie des modèles, Bruno Poizat, Lyon, 1985 | MR | Zbl
[4] M. van der Put, M. F. Singer, Galois theory of linear differential equations, Grundlehren Math. Wiss., 328, Springer-Verlag, Berlin, 2003 | MR | Zbl
[5] Ph. J. Cassidy, M. F. Singer, “Galois theory of parameterized differential equations and linear differential algebraic groups”, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 113–157 | MR | Zbl
[6] A. Pillay, “Differential Galois theory. I”, Illinois J. Math., 42:4 (1998), 678–699 | MR | Zbl
[7] A. Pillay, “Differential Galois theory. II”, Ann. Pure Appl. Logic, 88:2–3 (1997), 181–191 | DOI | MR | Zbl
[8] D. Marker, A. Pillay, “Differential Galois theory. III: Some inverse problems”, Illinois J. Math., 41:3 (1997), 453–461 | MR | Zbl
[9] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, MA–London–Don Mills, ON, 1969 | MR | MR | Zbl | Zbl
[10] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press, New York–London, 1973 | MR | Zbl
[11] J. J. Kovacic, “The differential Galois theory of strongly normal extensions”, Trans. Amer. Math. Soc., 355:11 (2003), 4475–4522 | DOI | MR | Zbl
[12] Th. Scanlon, “Model theory and differential algebra”, Differential algebra and related topics (Newark, NJ, 2000), World Sci. Publ., Singapore–River Edge, NJ, 2002, 125–150 | MR | Zbl
[13] T. McGrail, “The model theory of differential fields with finitely many commuting derivations”, J. Symbolic Logic, 65:2 (2000), 885–913 | DOI | MR | Zbl
[14] M. Rosenlicht, “The nonminimality of the differential closure”, Pacific J. Math., 52:2 (1974), 529–537 | MR | Zbl