Equiconvergence of eigenfunction expansions for Sturm-Liouville operators with a distributional potential
Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1307-1322
Voir la notice de l'article provenant de la source Math-Net.Ru
The Sturm-Liouville operator $L=-d^2/dx^2+q(x)$ in the space $L_2[0,\pi]$ under Dirichlet boundary conditions is investigated. It is assumed that $q(x)=u'(x)$, $u(x)\in L_2[0,\pi]$ (here, differentiation is used in the distributional sense). The problem of when the expansion of a function $f(x)$ in terms of a series of eigenfunctions and associated functions of the operator $L$ is uniformly equiconvergent on the whole of the interval $[0,\pi]$ with its Fourier sine series expansion is considered. It is shown that such uniform convergence holds for any function $f(x)$ in the space $L_2[0,\pi]$.
Bibliography: 22 titles.
Keywords:
Sturm-Liouville operator, singular potential
Mots-clés : uniform equiconvergence.
Mots-clés : uniform equiconvergence.
@article{SM_2010_201_9_a2,
author = {I. V. Sadovnichaya},
title = {Equiconvergence of eigenfunction expansions for {Sturm-Liouville} operators with a distributional potential},
journal = {Sbornik. Mathematics},
pages = {1307--1322},
publisher = {mathdoc},
volume = {201},
number = {9},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_9_a2/}
}
TY - JOUR AU - I. V. Sadovnichaya TI - Equiconvergence of eigenfunction expansions for Sturm-Liouville operators with a distributional potential JO - Sbornik. Mathematics PY - 2010 SP - 1307 EP - 1322 VL - 201 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2010_201_9_a2/ LA - en ID - SM_2010_201_9_a2 ER -
I. V. Sadovnichaya. Equiconvergence of eigenfunction expansions for Sturm-Liouville operators with a distributional potential. Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1307-1322. http://geodesic.mathdoc.fr/item/SM_2010_201_9_a2/