@article{SM_2010_201_9_a1,
author = {A. Yu. Konyaev},
title = {Bifurcation diagram and the discriminant of a~spectral curve of integrable systems on {Lie} algebras},
journal = {Sbornik. Mathematics},
pages = {1273--1305},
year = {2010},
volume = {201},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_9_a1/}
}
A. Yu. Konyaev. Bifurcation diagram and the discriminant of a spectral curve of integrable systems on Lie algebras. Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1273-1305. http://geodesic.mathdoc.fr/item/SM_2010_201_9_a1/
[1] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl
[2] M. Audin, Spinning tops. A course on integrable systems, Cambridge Stud. Adv. Math., 51, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[3] V. V. Trofimov, A. T. Fomenko, “Non-invariant symplectic group structures and Hamiltonian flows on symmetric spaces”, Selecta Math. Soviet., 7:4 (1988), 356–414 | MR | Zbl
[4] A. S. Miščenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl | Zbl
[5] A. S. Mishchenko, A. T. Fomenko, “Integrability of Euler equations on semisimple Lie algebras”, Selecta Math. Soviet., 2:4 (1982), 207–291 | MR | Zbl | Zbl
[6] S. V. Manakov, “Note on the integration of Euler's equations of the dynamics of an $n$-dimensional rigid body”, Funct. Anal. Appl., 10:4 (1976), 328–329 | DOI | MR | Zbl
[7] A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, Gordon and Breach, New York, 1988 | MR | MR | Zbl | Zbl
[8] Yu. A. Brailov, “Geometry of translations of invariants on semisimple Lie algebras”, Sb. Math., 194:11 (2003), 1585–1598 | DOI | MR | Zbl
[9] Yu. A. Brailov, A. T. Fomenko, “Lie groups and integrable Hamiltonian systems”, Recent advances in Lie theory (Vigo, Spain, 2000), Res. Exp. Math., 25, Heldermann, Lemgo, 2002, 45–76 | MR | Zbl
[10] N. Jacobson, Lie algebras, Intersci. Publ., New York–London, 1962 | MR | MR | Zbl | Zbl
[11] A. T. Fomenko, Differential geometry and topology, Contemp. Soviet Math., Consultants Bureau, New York–London, 1987 | MR | Zbl | Zbl
[12] J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts in Math., 9, Springer-Verlag, New York–Berlin, 1978 | MR | Zbl
[13] J. F. Kurtzke, jr., “Centralizers of irregular elements in reductive algebraic groups”, Pacific J. Math., 104:1 (1983), 133–154 | MR | Zbl
[14] D. Panyushev, A. Premet, O. Yakimova, “On symmetric invariants of centralisers in reductive Lie algebras”, J. Algebra, 313:1 (2007), 343–391 | DOI | MR | Zbl
[15] A. V. Bolsinov, “A completeness criterion for a family of functions in involution constructed by the argument shift method”, Soviet Math. Dokl., 38:1 (1989), 161–165 | MR | Zbl
[16] A. V. Bolsinov, A. A. Oshemkov, “Bi-Hamiltonian structures and singularities of integrable systems”, Regul. Chaotic Dyn., 14:4–5 (2009), 431–454 | DOI | MR
[17] A. G. Elashvili, V. G. Kac, “Classification of good gradings of simple Lie algebras”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 85–104 | MR | Zbl
[18] A. V. Bolsinov, K. M. Zuev, “A formal Frobenius theorem and argument shift”, Math. Notes, 86:1–2 (2009), 10–18 | DOI | MR | Zbl
[19] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math., 85:3 (1963), 327–404 | DOI | MR | Zbl
[20] A. A. Tarasov, “The maximality of certain commutative subalgebras in the Poisson algebra of a semisimple Lie algebra”, Russian Math. Surveys, 57:5 (2002), 1013–1014 | DOI | MR | Zbl
[21] D. I. Panyushev, “The index of a Lie algebra, the centralizer of a nilpotent element, and the normalizer of the centralizer”, Math. Proc. Cambridge Philos. Soc., 134:1 (2003), 41–59 | DOI | MR | Zbl
[22] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1992 | MR | MR | Zbl | Zbl