Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries
Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1249-1271

Voir la notice de l'article provenant de la source Math-Net.Ru

The first mixed problem with homogeneous Dirichlet boundary condition and initial function with compact support is considered for quasilinear second order parabolic equations in a cylindrical domain $D=(0,\infty)\times\Omega$. Upper bounds are obtained, which give the rate of decay of the solutions as $t\to\infty$ as a function of the geometry of the unbounded domain $\Omega\subset \mathbb R_n$, $n\geqslant 2$. Bibliography: 18 titles.
Keywords: first mixed problem, quasilinear parabolic equations, unbounded domain, stabilization of the solution, geometric characteristic.
@article{SM_2010_201_9_a0,
     author = {R. Kh. Karimov and L. M. Kozhevnikova},
     title = {Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries},
     journal = {Sbornik. Mathematics},
     pages = {1249--1271},
     publisher = {mathdoc},
     volume = {201},
     number = {9},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_9_a0/}
}
TY  - JOUR
AU  - R. Kh. Karimov
AU  - L. M. Kozhevnikova
TI  - Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1249
EP  - 1271
VL  - 201
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_9_a0/
LA  - en
ID  - SM_2010_201_9_a0
ER  - 
%0 Journal Article
%A R. Kh. Karimov
%A L. M. Kozhevnikova
%T Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries
%J Sbornik. Mathematics
%D 2010
%P 1249-1271
%V 201
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_9_a0/
%G en
%F SM_2010_201_9_a0
R. Kh. Karimov; L. M. Kozhevnikova. Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries. Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1249-1271. http://geodesic.mathdoc.fr/item/SM_2010_201_9_a0/