Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries
Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1249-1271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first mixed problem with homogeneous Dirichlet boundary condition and initial function with compact support is considered for quasilinear second order parabolic equations in a cylindrical domain $D=(0,\infty)\times\Omega$. Upper bounds are obtained, which give the rate of decay of the solutions as $t\to\infty$ as a function of the geometry of the unbounded domain $\Omega\subset \mathbb R_n$, $n\geqslant 2$. Bibliography: 18 titles.
Keywords: first mixed problem, quasilinear parabolic equations, unbounded domain, stabilization of the solution, geometric characteristic.
@article{SM_2010_201_9_a0,
     author = {R. Kh. Karimov and L. M. Kozhevnikova},
     title = {Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries},
     journal = {Sbornik. Mathematics},
     pages = {1249--1271},
     year = {2010},
     volume = {201},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_9_a0/}
}
TY  - JOUR
AU  - R. Kh. Karimov
AU  - L. M. Kozhevnikova
TI  - Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1249
EP  - 1271
VL  - 201
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_9_a0/
LA  - en
ID  - SM_2010_201_9_a0
ER  - 
%0 Journal Article
%A R. Kh. Karimov
%A L. M. Kozhevnikova
%T Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries
%J Sbornik. Mathematics
%D 2010
%P 1249-1271
%V 201
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2010_201_9_a0/
%G en
%F SM_2010_201_9_a0
R. Kh. Karimov; L. M. Kozhevnikova. Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries. Sbornik. Mathematics, Tome 201 (2010) no. 9, pp. 1249-1271. http://geodesic.mathdoc.fr/item/SM_2010_201_9_a0/

[1] A. K. Gushchin, “On estimates of the solutions of boundary value problems for a parabolic equation of second order”, Proc. Steklov Inst. Math., 126 (1975), 1–46 | MR | Zbl | Zbl

[2] A. K. Guščin, “Stabilization of the solutions of the second boundary value problem for a second order parabolic equation”, Math. USSR-Sb., 30:4 (1976), 403–440 | DOI | MR | Zbl | Zbl

[3] L. M. Kozhevnikova, F. Kh. Mukminov, “Estimates of the stabilization rate as $t\to\infty$ of solutions of the first mixed problem for a quasilinear system of second-order parabolic equations”, Sb. Math., 191:2 (2000), 235–273 | DOI | MR | Zbl

[4] L. M. Kozhevnikova, “Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation”, Sb. Math., 196:7 (2005), 999–1032 | DOI | MR | Zbl

[5] A. F. Tedeev, “Stabilization of solutions of a first mixed boundary-value problem for a high-order quasilinear parabolic equation”, Differential Equations, 25:3 (1989), 346–352 | MR | Zbl

[6] F. H. Mukminov, “Decrease with time of the norm of a solution of a mixed problem for a high-order parabolic equation”, Differential Equations, 23:10 (1987), 1215–1220 | MR | Zbl | Zbl

[7] A. F. Tedeev, “Stabilization of the solutions of initial-boundary value problems for quasilinear parabolic equations”, Ukrainian Math. J., 44:10 (1992), 1325–1334 | DOI | MR | Zbl

[8] N. D. Alikakos, R. Rostamian, “Gradient estimates for degenerate diffusion equations. II”, Proc. Roy. Soc. Edinburgh Sect. A, 91:3–4 (1982), 335–346 | MR | Zbl

[9] A. F. Tedeev, “Estimation of the stabilization rate for $t\to\infty$ of a solution of a second mixed problem for a second-order quasilinear parabolic equation”, Differential Equations, 27:10 (1991), 1274–1283 | MR | Zbl | Zbl

[10] A. F. Tedeev, “The stabilization of solution of the third mixed problem for quasilinear parabolic equations of second order in the noncylindric domain”, Soviet Math. (Iz. VUZ), 35:1 (1991), 75–87 | MR | Zbl

[11] S. P. Degtyarev, A. F. Tedeev, “$L_1$–$L_\infty$ estimates of solutions of the Cauchy problem for an anisotropic degenerate parabolic equation with double non-linearity and growing initial data”, Sb. Math., 198:5 (2007), 639–660 | DOI | MR | Zbl

[12] A. V. Martynenko, “Otsenka maksimuma reshenii zadachi Koshi dlya vyrozhdayuschegosya parabolicheskogo uravneniya s neodnorodnoi plotnostyu i istochnikom”, Trudy IPMM, 16, IPMM NAN Ukrainy, Donetsk, 2008, 136–150 | MR

[13] F. H. Mukminov, “Stabilization of solutions of the first mixed problem for a parabolic equation of second order”, Math. USSR-Sb., 39:4 (1981), 449–467 | DOI | MR | Zbl | Zbl

[14] L. M. Kozhevnikova, F. H. Mukminov, “Decay of solutions of the first mixed problem for a high-order parabolic equation with minor terms”, J. Math. Sci. (N. Y.), 150:5 (2008), 2369–2383 | DOI | MR | Zbl

[15] L. M. Kozhevnikova, “Behaviour at infinity of solutions of pseudodifferential elliptic equations in unbounded domains”, Sb. Math., 199:8 (2008), 1169–1200 | DOI | MR

[16] L. M. Kozhevnikova, “Stabilization of solutions of pseudo-differential parabolic equations in unbounded domains”, Izv. Math., 74:2 (2010), 325–345 | DOI | Zbl

[17] O. A. Oleinik, G. A. Iosifyan, “O edinstvennosti resheniya smeshannoi zadachi dlya uravnenii teorii uprugosti v neogranichennoi oblasti”, UMN, 31:5 (1976), 247–248 | MR | Zbl

[18] O. A. Ladyženskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl