Covering planar sets
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1217-1248
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Problems connected with the classical Borsuk problem on partitioning a set in Euclidean space into subsets of smaller diameter, and also connected with the Nelson-Hadwiger problem on the chromatic number of Euclidean space, are studied. New bounds are obtained for the quantities $d_n=\sup d_n(\Phi)$ and $d'_n=\sup d'_n(\Phi)$, where the suprema are taken over all sets of unit diameter on a plane, and where the quantities $d_n(\Phi)$ and $d'_n(\Phi)$ are defined for a given bounded set $\Phi\subset\mathbb{R}^2$ as follows:
\begin{align*}
d_n(\Phi)=\inf\{x\in\mathbb{R}^+:\Phi\subseteq
\Phi_1\cup\dots\cup\Phi_n,\,\forall\, i\ \operatorname{diam}\Phi_i\le x\},
\\
d'_n(\Phi)=\inf\{x\in\mathbb{R}^+:\Phi\subseteq
\Phi_1\cup\dots\cup\Phi_n,\,\forall\, i\ \forall\, X,Y\in\Phi_i\,\ XY\ne x\}.
\end{align*}
Here the $\Phi_i\subset\mathbb R^2$ are subsets, $\operatorname{diam}\Phi_i$ is the diameter of $\Phi_i$, $XY$ is the distance between the points $X$ and $Y$, and $n\in \mathbb N$. The bounds obtained for $d_n$ are better than any known before; this paper is the first to consider the values $d'_n$.
Bibliography: 19 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
chromatic number, Borsuk problem, diameter of a set, coverings of planar sets, universal covering sets and systems.
                    
                    
                    
                  
                
                
                @article{SM_2010_201_8_a6,
     author = {V. P. Filimonov},
     title = {Covering planar sets},
     journal = {Sbornik. Mathematics},
     pages = {1217--1248},
     publisher = {mathdoc},
     volume = {201},
     number = {8},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a6/}
}
                      
                      
                    V. P. Filimonov. Covering planar sets. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1217-1248. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a6/
