The method of local linear approximation in the theory of nonlinear functional-differential equations
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1193-1215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions for the existence of solutions to the nonlinear functional-differential equation $$ \frac{d^mx(t)}{dt^m}+(Fx)(t)=h(t), \qquad t\in\mathbb R, $$ in the space of functions bounded on the axes are obtained by using local linear approximation to the operator $F$. Bibliography: 21 items.
Keywords: functional-differential equations, invertibility of nonlinear operators.
@article{SM_2010_201_8_a5,
     author = {V. E. Slyusarchuk},
     title = {The method of local linear approximation in the theory of nonlinear functional-differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1193--1215},
     year = {2010},
     volume = {201},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a5/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - The method of local linear approximation in the theory of nonlinear functional-differential equations
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1193
EP  - 1215
VL  - 201
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_8_a5/
LA  - en
ID  - SM_2010_201_8_a5
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T The method of local linear approximation in the theory of nonlinear functional-differential equations
%J Sbornik. Mathematics
%D 2010
%P 1193-1215
%V 201
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2010_201_8_a5/
%G en
%F SM_2010_201_8_a5
V. E. Slyusarchuk. The method of local linear approximation in the theory of nonlinear functional-differential equations. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1193-1215. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a5/

[1] É. Mukhamadiev, “On the inversion of functional operators in a space of functions bounded on the axes”, Math. Notes, 11:3 (1972), 169–172 | DOI | Zbl

[2] É. Mukhamadiev, “Investigations in the theory of bounded and periodic solutions of differential equations”, Math. Notes, 30:3 (1981), 713–722 | DOI | MR | Zbl | Zbl

[3] V. E. Sljusarčuk, “Invertibility of almost periodic $c$-continuous functional operators”, Math. USSR-Sb., 44:4 (1983), 431–446 | DOI | MR | Zbl | Zbl

[4] V. E. Slyusarchuk, “Integralnoe predstavlenie $c$-nepreryvnykh lineinykh operatorov”, Dokl. AN USSR. Ser. A, 8 (1981), 35–38 | MR | Zbl

[5] V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators”, Math. USSR-Sb., 58:1 (1987), 83–100 | DOI | MR | Zbl

[6] V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of nonautonomous functional-differential operators”, Math. Notes, 42:2 (1987), 648–651 | DOI | MR | Zbl | Zbl

[7] V. E. Slyusarchuk, “Necessary and sufficient conditions for invertibility of uniformly c-continuous functional-differential operators”, Ukrainian Math. J., 41:2 (1989), 180–183 | DOI | MR | Zbl

[8] V. G. Kurbatov, Lineinye differentsialno-raznostnye uravneniya, Izd-vo Voronezh. un-ta, Voronezh, 1990 | MR | Zbl

[9] Chan Khyu Bong, Pochti periodicheskie i ogranichennye resheniya lineinykh funktsionalno-differentsialnykh uravnenii, Dis. ... dokt. fiz.-matem. nauk, In-t matem. AN Ukrainy, Kiev, 1993

[10] V. E. Slyusarchuk, “Slabo nelineinye vozmuscheniya impulsnykh sistem”, Matem. fizika i nelineinaya mekh., 15:49 (1991), 32–35 | MR

[11] M. A. Krasnosel'skii, V. Sh. Burd, Yu. S. Kolesov, Nonlinear almost periodic oscillations, Halsted Press, New York–Toronto, ON; Israel Program for Scientific Transl., Jerusalem–London, 1973 | MR | MR | Zbl | Zbl

[12] N. N. Bogolyubov, Yu. A. Mitropol'skij, A. M. Samojlenko, Methods of accelerated convergence in nonlinear mechanics, Hindustan Publ., Delhi; Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl | Zbl

[13] R. Reissig, G. Sansone, R. Conti, Qualitative Theorie nichtlinearer Differentialgleichungen, Edizioni Cremonese, Rome, 1963 | MR | MR | Zbl

[14] Yu. V. Trubnikov, A. I. Perov, Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, Minsk, 1986 | MR | Zbl

[15] A. I. Perov, I. D. Kostrub, “Metod napravlyayuschikh funktsii v zadache o nelineinykh pochti-periodicheskikh kolebaniyakh”, Vestnik VGU. Ser. fizika, matem., 1 (2002), 163–171 | Zbl

[16] Ju. L. Dalec'kiǐ, M. G. Kreǐn, Stability of solutions of differential equations in Banach space, Amer. Math. Soc., Providence, RI, 1974 | MR | MR | Zbl | Zbl

[17] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl

[18] L. Nirenberg, Topic in nonlinear functional analysis, Courant Institute of Math. Sciences, New York Univ., New York, 1974 | MR | MR | Zbl | Zbl

[19] V. E. Slyusarchuk, “Neobkhodimye i dostatochnye usloviya suschestvovaniya i edinstvennosti ogranichennykh reshenii nelineinykh differentsialnykh uravnenii”, Nelnin. kolivannya, 2:4 (1999), 523–539 | MR | Zbl

[20] V. E. Slyusarchuk, “Conditions for the existence of bounded solutions of non-linear differential equations”, Russian Math. Surveys, 54:4 (1999), 852–853 | DOI | MR | Zbl

[21] V. E. Slyusarchuk, “Necessary and sufficient conditions for existence and uniqueness of bounded and almost-periodic solutions of nonlinear differential equations”, Acta Appl. Math., 65:1–3 (2001), 333–341 | DOI | MR | Zbl