The method of local linear approximation in the theory of nonlinear functional-differential equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1193-1215
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditions for the existence of solutions to the nonlinear functional-differential equation
$$
\frac{d^mx(t)}{dt^m}+(Fx)(t)=h(t), \qquad t\in\mathbb R,
$$
in the space of functions bounded on the axes are obtained
by using local linear approximation to the operator $F$.
Bibliography: 21 items.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
functional-differential equations, invertibility of nonlinear operators.
                    
                    
                    
                  
                
                
                @article{SM_2010_201_8_a5,
     author = {V. E. Slyusarchuk},
     title = {The method of local linear approximation in the theory of nonlinear functional-differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1193--1215},
     publisher = {mathdoc},
     volume = {201},
     number = {8},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a5/}
}
                      
                      
                    TY - JOUR AU - V. E. Slyusarchuk TI - The method of local linear approximation in the theory of nonlinear functional-differential equations JO - Sbornik. Mathematics PY - 2010 SP - 1193 EP - 1215 VL - 201 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2010_201_8_a5/ LA - en ID - SM_2010_201_8_a5 ER -
V. E. Slyusarchuk. The method of local linear approximation in the theory of nonlinear functional-differential equations. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1193-1215. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a5/
