Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1153-1191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an $f_n$-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the $f_n$-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.
Keywords: integrable Hamiltonian systems, the momentum map, nondegenerate singularities, topological invariants.
@article{SM_2010_201_8_a4,
     author = {A. A. Oshemkov},
     title = {Classification of hyperbolic singularities of rank zero of integrable {Hamiltonian} systems},
     journal = {Sbornik. Mathematics},
     pages = {1153--1191},
     year = {2010},
     volume = {201},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a4/}
}
TY  - JOUR
AU  - A. A. Oshemkov
TI  - Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1153
EP  - 1191
VL  - 201
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_8_a4/
LA  - en
ID  - SM_2010_201_8_a4
ER  - 
%0 Journal Article
%A A. A. Oshemkov
%T Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
%J Sbornik. Mathematics
%D 2010
%P 1153-1191
%V 201
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2010_201_8_a4/
%G en
%F SM_2010_201_8_a4
A. A. Oshemkov. Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1153-1191. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a4/

[1] Nguyen Tien Zung, “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215 | MR | Zbl

[2] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[3] A. V. Bolsinov, A. A. Oshemkov, “Singularities of integrable Hamiltonian systems”, Topological methods in the theory of integrable systems, Cambridge Sci. Publ., Cambridge, 2006, 1–67 | MR | Zbl

[4] V. S. Matveev, A. A. Oshemkov, “Algorithmic classification of invariant neighborhoods for points of saddle-saddle type”, Moscow Univ. Math. Bull., 54:2 (1999), 44–47 | MR | Zbl

[5] A. T. Fomenko, Kh. Tsishang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl | Zbl

[6] L. H. Eliasson, “Normal forms for Hamiltonian systems with Poisson commuting integrals – elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35 | DOI | MR | Zbl

[7] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[8] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl

[9] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl

[10] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[11] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl | Zbl

[12] L. M. Lerman, Ya. L. Umanskiǐ, “Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of $\mathbb R^2$ in extended neighborhoods of simple singular points. I”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 511–542 | DOI | MR | Zbl

[13] L. M. Lerman, Ya. L. Umanskiǐ, “Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of $\mathbb R^2$ in extended neighborhoods of simple singular points. II”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 479–506 | DOI | MR | Zbl

[14] L. M. Lerman, Ya. L. Umanskii, “Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of $\mathbb R^2$ in extended neighbourhoods of simple singular points. III. Realization”, Sb. Math., 186:10 (1995), 1477–1491 | DOI | MR | Zbl

[15] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR | Zbl

[16] V. S. Matveev, “Vychislenie znachenii invarianta Fomenko dlya tochki tipa sedlo-sedlo integriruemoi gamiltonovoi sistemy”, Trudy sem. po vekt. i tenz. analizu, 25:1 (1993), 75–104 | Zbl

[17] A. V. Bolsinov, V. S. Matveev, “Integrable Hamiltonian systems: Topological structure of saturated neighborhoods of nondegenerate singular points”, Tensor and vector analysis. Geometry, mechanics and physics, Gordon and Breach, Reading, 1998, 31–56 | MR | Zbl

[18] V. V. Korneev, “Predstavlenie chetyrekhmernoi osobennosti tipa sedlo-sedlo v vide pochti pryamogo proizvedeniya dvumernykh atomov. Sluchai slozhnosti dva”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 127–135

[19] V. V. Kalashnikov, “Prostye giperbolicheskie osobennosti puassonovykh deistvii”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 115–126

[20] A. A. Oshemkov, “Sedlovye osobennosti slozhnosti 1 integriruemykh gamiltonovykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2010 (to appear)

[21] V. S. Matveev, “Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type”, Sb. Math., 187:4 (1996), 495–524 | DOI | MR | Zbl

[22] Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities, arXiv: math/0106013

[23] A. A. Oshemkov, “Morse functions on two-dimensional surfaces. Encoding of singularities”, Proc. Steklov Inst. Math., 4 (1995), 119–127 | MR | Zbl

[24] S.-T. Hu, Homotopy theory, Academic Press, New York–London, 1959 | MR | Zbl | Zbl