Some conditions for the existence of a total differential at a point
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1135-1152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give sufficient conditions for the existence of a total differential at a point (including a boundary point) of a function whose generalized derivatives lie in some weighted classes. Bibliography: 8 titles.
Keywords: total differential, functions with generalized derivatives.
@article{SM_2010_201_8_a3,
     author = {V. M. Miklyukov},
     title = {Some conditions for the existence of a~total differential at a~point},
     journal = {Sbornik. Mathematics},
     pages = {1135--1152},
     year = {2010},
     volume = {201},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a3/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - Some conditions for the existence of a total differential at a point
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1135
EP  - 1152
VL  - 201
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_8_a3/
LA  - en
ID  - SM_2010_201_8_a3
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T Some conditions for the existence of a total differential at a point
%J Sbornik. Mathematics
%D 2010
%P 1135-1152
%V 201
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2010_201_8_a3/
%G en
%F SM_2010_201_8_a3
V. M. Miklyukov. Some conditions for the existence of a total differential at a point. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1135-1152. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a3/

[1] G. D. Suvorov, Semeistva ploskikh topologicheskikh otobrazhenii, Izd-vo SO AN SSSR, Novosibirsk, 1965 | MR | Zbl

[2] S. Saks, Theory of the integral, Studies in advanced Mathematics, Stechert, New York, 1937 | MR | Zbl

[3] A. Kufner, O. John, S.Fučik, Function spaces, Noordhoff, Leyden, 1977 | MR | Zbl

[4] Yu. V. Dymchenko, V. A. Shlyk, “Sootnoshenie mezhdu vesovoi emkostyu kondensatora i vesovym modulem semeistva razdelyayuschikh poverkhnostei”, Dalnevostochnyi matematicheskii sbornik, 2 (1996), 72–80 | MR | Zbl

[5] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, Berlin–Heidelberg–New York, 1969 | MR | MR | Zbl | Zbl

[6] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton–New York–London–Tokyo, 1992 | MR | Zbl

[7] J. Lelong-Ferrand, Représentation conforme et transformations à integrale de Dirichlet bornée, Gauthier, Paris, 1955 | MR | Zbl

[8] G. D. Suvorov, Obobschennyi “printsip dliny i ploschadi” v teorii otobrazhenii, Naukova Dumka, Kiev, 1985 | MR | Zbl