Spectral asymptotics and the regularized trace of a singular integral operator
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1121-1134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give more precise asymptotic behaviour of the spectrum of a singular integro-differential operator and find the regularized trace of its inverse operator. Bibliography: 12 titles.
Keywords: Prandtl's equation, singular values, eigenvalues, regularized trace.
@article{SM_2010_201_8_a2,
     author = {M. R. Dostanic},
     title = {Spectral asymptotics and the regularized trace of a~singular integral operator},
     journal = {Sbornik. Mathematics},
     pages = {1121--1134},
     year = {2010},
     volume = {201},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a2/}
}
TY  - JOUR
AU  - M. R. Dostanic
TI  - Spectral asymptotics and the regularized trace of a singular integral operator
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1121
EP  - 1134
VL  - 201
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_8_a2/
LA  - en
ID  - SM_2010_201_8_a2
ER  - 
%0 Journal Article
%A M. R. Dostanic
%T Spectral asymptotics and the regularized trace of a singular integral operator
%J Sbornik. Mathematics
%D 2010
%P 1121-1134
%V 201
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2010_201_8_a2/
%G en
%F SM_2010_201_8_a2
M. R. Dostanic. Spectral asymptotics and the regularized trace of a singular integral operator. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1121-1134. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a2/

[1] N. I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and their applications to mathematical physics, Aeronautical Research Laboratories, Melbourne, 1949 | MR | MR | Zbl | Zbl

[2] Kh. M. Kogan, L. A. Sakhnovich, “Asimptotika spektra odnogo singulyarnogo integro-differentsialnogo operatora”, Differents. uravneniya, 20:8 (1984), 1444–1447 | MR | Zbl

[3] M. Kac, “On some connections between probability theory and differential and integral equations”, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (Berceley, CA, 1950), Univ. of California Press, Berceley, CA, 1951, 189–215 | MR | Zbl

[4] V. A. Sadovnichii, V. E. Podol'skii, “Traces of operators”, Russian Math. Surveys, 61:5 (2006), 885–953 | DOI | MR | Zbl

[5] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[6] J. Weidmann, Linear operators in Hilbert spaces, Grad. Texts in Math., 68, Springer-Verlag, New York–Heidelberg–Berlin, 1980 | MR | Zbl

[7] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2-d ed., Cambridge Uiversity Press, Cambridge, 1952 ; G. Khardi, Dzh. Littlvud, Neravenstva, IL, M., 1948 | MR | Zbl | MR

[8] M. Sh. Birman, M. Z. Solomyak, “Estimates of singular numbers of integral operators”, Russian Math. Surveys, 32:1 (1977), 15–89 | DOI | MR | Zbl | Zbl

[9] M. R. Dostanić, “Spectral properties of the operator of Riesz potential type”, Proc. Amer. Math. Soc., 126:8 (1998), 2291–2297 | DOI | MR | Zbl

[10] V. I. Gorbachuk, M. L. Gorbachuk, Boundary value problems for operator differential equations, Math. Appl. (Soviet Ser.), 48, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[11] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl

[12] Ch. Brislawn, “Kernels of trace class operators”, Proc. Amer. Math. Soc., 104:4 (1988), 1181–1190 | DOI | MR | Zbl