On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1111-1119
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem on the coincidence of the subgroups $J(E(A))A$ and $\operatorname{Rad}({}_{E(A)}A)$ in a given group $A$ is studied. The maximal completely characteristic subgroups of some Abelian groups are found.
Bibliography: 5 titles.
Keywords:
Abelian group, endomorphism ring, Jacobson radical.
@article{SM_2010_201_8_a1,
author = {A. P. Dik},
title = {On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$},
journal = {Sbornik. Mathematics},
pages = {1111--1119},
publisher = {mathdoc},
volume = {201},
number = {8},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a1/}
}
TY - JOUR
AU - A. P. Dik
TI - On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$
JO - Sbornik. Mathematics
PY - 2010
SP - 1111
EP - 1119
VL - 201
IS - 8
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_2010_201_8_a1/
LA - en
ID - SM_2010_201_8_a1
ER -
A. P. Dik. On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1111-1119. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a1/