On the coincidence of the subgroups $J(E(A))A$ and $\operatorname{Rad}({}_{E(A)}A)$ in a group $A$
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1111-1119
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem on the coincidence of the subgroups $J(E(A))A$ and $\operatorname{Rad}({}_{E(A)}A)$ in a given group $A$ is studied. The maximal completely characteristic subgroups of some Abelian groups are found. Bibliography: 5 titles.
Keywords:
Abelian group, endomorphism ring, Jacobson radical.
@article{SM_2010_201_8_a1,
author = {A. P. Dik},
title = {On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$},
journal = {Sbornik. Mathematics},
pages = {1111--1119},
year = {2010},
volume = {201},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a1/}
}
A. P. Dik. On the coincidence of the subgroups $J(E(A))A$ and $\operatorname{Rad}({}_{E(A)}A)$ in a group $A$. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1111-1119. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a1/
[1] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Endomorphism rings of abelian groups, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl
[2] F. Kasch, Moduln und Ringe, Teubner, Stuttgart, 1977 | MR | MR | Zbl | Zbl
[3] L. Fuchs, Infinite abelian groups, vol. I, Pure and Applied Mathematics, 36, Academic Press, New York–London, 1970 | MR | MR | Zbl | Zbl
[4] L. Fuchs, Infinite abelian groups, vol. II, Pure and Applied Mathematics, 36, Academic Press, New York–London, 1973 | MR | MR | Zbl
[5] E. Yu. Karavdina, “Radikal Dzhekobsona koltsa obobschennykh matrits poryadka 2”, Mezhdunarodnaya konferentsiya po matematike i mekhanike: izbrannye doklady, Tomskii gos. un-t, Tomsk, 2003, 19–27