On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1111-1119

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem on the coincidence of the subgroups $J(E(A))A$ and $\operatorname{Rad}({}_{E(A)}A)$ in a given group $A$ is studied. The maximal completely characteristic subgroups of some Abelian groups are found. Bibliography: 5 titles.
Keywords: Abelian group, endomorphism ring, Jacobson radical.
@article{SM_2010_201_8_a1,
     author = {A. P. Dik},
     title = {On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$},
     journal = {Sbornik. Mathematics},
     pages = {1111--1119},
     publisher = {mathdoc},
     volume = {201},
     number = {8},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a1/}
}
TY  - JOUR
AU  - A. P. Dik
TI  - On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1111
EP  - 1119
VL  - 201
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_8_a1/
LA  - en
ID  - SM_2010_201_8_a1
ER  - 
%0 Journal Article
%A A. P. Dik
%T On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$
%J Sbornik. Mathematics
%D 2010
%P 1111-1119
%V 201
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_8_a1/
%G en
%F SM_2010_201_8_a1
A. P. Dik. On the coincidence of the subgroups $J(E(A))A$ and~$\operatorname{Rad}({}_{E(A)}A)$ in a~group~$A$. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1111-1119. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a1/