The widths of classes of analytic functions in a disc
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1091-1110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The precise values of several $n$-widths of the classes $W^m_{p,R}(\Psi)$, $1\leqslant p<\infty$, $m\in\mathbb N$, $R\geqslant1$, in the Banach spaces $\mathscr L_{p,\gamma}$ and $B_{p,\gamma}$ are calculated, where $\gamma$ is a weight. These are classes of analytic functions $f$ in a disc of radius $R$ whose $m$th derivatives $f^{(m)}$ belong to the Hardy space $H_{p,R}$ and whose angular boundary values have averaged moduli of smoothness of second order which are majorized by the fixed function $\Psi$ on the point set $\{\pi/(2k)\}_{k\in\mathbb N}$. For the classes $W^m_{p,R}(\Psi)$ best linear methods of approximation in $\mathscr L_{p,\gamma}$ are developed. Extremal problems of related content are also considered. Bibliography: 37 titles.
Keywords: weight function, best linear method of approximation, optimal method of function recovery, best method of coding of functions.
@article{SM_2010_201_8_a0,
     author = {S. B. Vakarchuk and M. Sh. Shabozov},
     title = {The widths of classes of analytic functions in a~disc},
     journal = {Sbornik. Mathematics},
     pages = {1091--1110},
     year = {2010},
     volume = {201},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a0/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - M. Sh. Shabozov
TI  - The widths of classes of analytic functions in a disc
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1091
EP  - 1110
VL  - 201
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_8_a0/
LA  - en
ID  - SM_2010_201_8_a0
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A M. Sh. Shabozov
%T The widths of classes of analytic functions in a disc
%J Sbornik. Mathematics
%D 2010
%P 1091-1110
%V 201
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2010_201_8_a0/
%G en
%F SM_2010_201_8_a0
S. B. Vakarchuk; M. Sh. Shabozov. The widths of classes of analytic functions in a disc. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1091-1110. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a0/

[1] V. M. Tikhomirov, “Diameters of sets in function spaces and the theory of best approximations”, Russian Math. Surveys, 15:3 (1960), 75–111 | DOI | MR | Zbl

[2] L. V. Taikov, “On the best approximation in the mean of certain classes of analytic functions”, Math. Notes, 1:2 (1967), 104–109 | DOI | MR | Zbl

[3] K. I. Babenko, “O nailuchshikh priblizheniyakh odnogo klassa analiticheskikh funktsii”, Izv. AN SSSR. Ser. matem., 22:5 (1958), 631–640 | MR | Zbl

[4] L. V. Taikov, “Diameters of certain classes of analytic functions”, Math. Notes, 22:2 (1977), 650–656 | DOI | MR | Zbl

[5] N. Ainulloev, L. V. Taikov, “Best approximation in the sense of Kolmogorov of classes of functions analytic in the unit disc”, Math. Notes, 40:3 (1986), 699–705 | DOI | MR | Zbl | Zbl

[6] M. Z. Dveirin, “Poperechniki i $\varepsilon$-entropiya klassov funktsii, analiticheskikh v edinichnom kruge”, Teoriya funktsii, funkts. analiz i pril., 23 (1975), 32–46 | MR | Zbl

[7] Yu. A. Farkov, “Widths of Hardy classes and Bergman classes on the ball in $\mathbb C^n$”, Russian Math. Surveys, 45:5 (1990), 229–231 | DOI | MR | Zbl

[8] Yu. A. Farkov, “$n$-Widths, Faber expansion, and computation of analytic functions”, J. Complexity, 12:1 (1996), 58–79 | DOI | MR | Zbl

[9] S. D. Fisher, M. I. Stessin, “The $n$-width of the unit ball of $H^q$”, J. Approx. Theory, 67:3 (1991), 347–356 | DOI | MR | Zbl

[10] A. Pinkus, $n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl

[11] S. B. Vakarchuk, “Widths of certain classes of analytic functions in the Hardy space $H_2$”, Ukrainian Math. J., 41:6 (1989), 686–689 | DOI | MR | Zbl

[12] S. B. Vakarchuk, “Diameters of certain classes of functions analytic in the unit disc. I”, Ukrainian Math. J., 42:7 (1990), 769–778 | DOI | MR | Zbl

[13] S. B. Vakarchuk, “On diameters of certain classes of functions analytic in the unit disc. II”, Ukrainian Math. J., 42:8 (1990), 907–914 | DOI | MR | Zbl

[14] S. B. Vakarchuk, “Exact values of widths for certain functional classes”, Ukrainian Math. J., 48:1 (1996), 151–153 | DOI | MR | Zbl

[15] M. Sh. Shabozov, O. Sh. Shabozov, “Widths of some classes of analytic functions in the Hardy space $H_2$”, Math. Notes, 68:5–6 (2000), 675–679 | DOI | MR | Zbl

[16] M. Sh. Shabozov, “Widths of some classes of analytic functions in the Bergman space”, Dokl. Math., 65:2 (2002), 194–197 | MR

[17] M. Sh. Shabozov, G. Yusupov, “Best approximation and width of some classes of analytic functions”, Dokl. Math., 65:1 (2002), 111–113 | MR | Zbl

[18] M. Z. Dveirin, I. V. Chebanenko, “O polinomialnoi approksimatsii v banakhovykh prostranstvakh analiticheskikh funktsii”, Teoriya otobrazhenii i priblizhenie funktsii, Naukova dumka, Kiev, 1983, 62–73 | MR | Zbl

[19] S. B. Vakarchuk, “Nailuchshie lineinye metody priblizheniya i tochnye otsenki $n$-poperechnikov klassov analiticheskikh funktsii”, Dokl. AN Ukrainy. Matematika, estestvoznanie, tekhnicheskie nauki, 1994, no. 6, 15–20 | MR

[20] S. B. Vakarchyuk, “Best linear methods of approximation and widths of classes of analytic functions in a disk”, Math. Notes, 57:1 (1995), 21–27 | DOI | MR | Zbl

[21] S. B. Vakarchyuk, “On the best linear approximation methods and the widths of certain classes of analytic functions”, Math. Notes, 65:2 (1999), 153–158 | DOI | MR | Zbl

[22] S. B. Vakarchyuk, “Exact values of widths of classes of analytic functions on the disk and best linear approximation methods”, Math. Notes, 72:5–6 (2002), 615–619 | DOI | MR | Zbl

[23] S. B. Vakarchuk, “On some extremal problems of approximation theory in the complex plane”, Ukrainian Math. J., 56:9 (2004), 1371–1390 | DOI | MR | Zbl

[24] S. V. Shvedenko, “Hardy classes and related spaces of analytic functions in the unit circle, polydisc, and ball”, J. Soviet Math., 39:6 (1987), 3011–3087 | DOI | MR | Zbl | Zbl

[25] M. Sh. Shabozov, O. Sh. Shabozov, “On the best approximation of some classes of analytic functions in weighted Bergman spaces”, Dokl. Math., 75:1 (2007), 97–100 | DOI | MR

[26] M. I. Gvaradze, Ob odnom klasse prostranstv analiticheskikh funktsii, Dis. ... kand. fiz.-matem. nauk, Tbilisskii gos. un-t, Tbilisi, 1975

[27] V. M. Tikhomirov, “Teoriya priblizheniya”, Analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR | Zbl

[28] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizhenii, Nauka, M., 1970 | MR

[29] K. Yu. Osipenko, “On optimal recovery methods in Hardy–Sobolev spaces”, Sb. Math., 192:2 (2001), 225–244 | DOI | MR | Zbl

[30] H. Ding, K. I. Gross, D. St. P.Richard, “The $N$-widths of spaces of holomorphic functions on bounded symmetric domains of tube type”, J. Approx. Theory, 104:1 (2000), 121–141 | DOI | MR | Zbl

[31] V. M. Kokilashvili, “A direct theorem on mean approximation of analytic functions by polynomials”, Soviet Math. Dokl., 10 (1969), 411–414 | MR | Zbl

[32] S. Ya. Alper, “O priblizhenii v srednem analiticheskikh funktsii klassa $E_p$”, Issledovaniya po sovremennym problemam teorii funktsii kompleksnogo peremennogo, Fizmatlit, M., 1960, 273–286 | MR

[33] Yu. V. Kryakin, “Jackson theorems in $H^p$, $0

\infty$”, Soviet Math. (Iz. VUZ), 29:8 (1985), 24–29 | MR | Zbl | Zbl

[34] A. Zygmund, Trigonometric series, v. I, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl

[35] N. I. Shikhaliev, “Neravenstva tipa S. N. Bernshteina–A. A. Markova dlya analiticheskikh funktsii”, Dokl. AN AzSSR, 31:8 (1975), 9–14 | Zbl

[36] N. P. Korneichuk, “Optimalnye metody kodirovaniya i vosstanovleniya funktsii”, Optimal algorithms. Proc. International Symposium (Blagoevgrad, 1986), Bulgarian Acad. Sci., Sofia, 1986, 157–171 | Zbl

[37] N. Korneǐchuk, Exact constants in approximation theory, Encyclopedia Math. Appl., 38, Cambridge Univ. Press, Cambridge, 1991 | MR | MR | Zbl | Zbl