The widths of classes of analytic functions in a~disc
Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1091-1110

Voir la notice de l'article provenant de la source Math-Net.Ru

The precise values of several $n$-widths of the classes $W^m_{p,R}(\Psi)$, $1\leqslant p\infty$, $m\in\mathbb N$, $R\geqslant1$, in the Banach spaces $\mathscr L_{p,\gamma}$ and $B_{p,\gamma}$ are calculated, where $\gamma$ is a weight. These are classes of analytic functions $f$ in a disc of radius $R$ whose $m$th derivatives $f^{(m)}$ belong to the Hardy space $H_{p,R}$ and whose angular boundary values have averaged moduli of smoothness of second order which are majorized by the fixed function $\Psi$ on the point set $\{\pi/(2k)\}_{k\in\mathbb N}$. For the classes $W^m_{p,R}(\Psi)$ best linear methods of approximation in $\mathscr L_{p,\gamma}$ are developed. Extremal problems of related content are also considered. Bibliography: 37 titles.
Keywords: weight function, best linear method of approximation, optimal method of function recovery, best method of coding of functions.
@article{SM_2010_201_8_a0,
     author = {S. B. Vakarchuk and M. Sh. Shabozov},
     title = {The widths of classes of analytic functions in a~disc},
     journal = {Sbornik. Mathematics},
     pages = {1091--1110},
     publisher = {mathdoc},
     volume = {201},
     number = {8},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_8_a0/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - M. Sh. Shabozov
TI  - The widths of classes of analytic functions in a~disc
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1091
EP  - 1110
VL  - 201
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_8_a0/
LA  - en
ID  - SM_2010_201_8_a0
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A M. Sh. Shabozov
%T The widths of classes of analytic functions in a~disc
%J Sbornik. Mathematics
%D 2010
%P 1091-1110
%V 201
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_8_a0/
%G en
%F SM_2010_201_8_a0
S. B. Vakarchuk; M. Sh. Shabozov. The widths of classes of analytic functions in a~disc. Sbornik. Mathematics, Tome 201 (2010) no. 8, pp. 1091-1110. http://geodesic.mathdoc.fr/item/SM_2010_201_8_a0/