On a~conjecture of Ciliberto
Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1069-1090

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a threefold hypersurface of degree $d$ with at most ordinary double points is factorial if it contains no planes and has at most $(d-1)^2$ singular points. Bibliography: 13 titles.
Keywords: ordinary double points, factorial property.
Mots-clés : hypersurfaces
@article{SM_2010_201_7_a6,
     author = {I. A. Cheltsov},
     title = {On a~conjecture of {Ciliberto}},
     journal = {Sbornik. Mathematics},
     pages = {1069--1090},
     publisher = {mathdoc},
     volume = {201},
     number = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - On a~conjecture of Ciliberto
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1069
EP  - 1090
VL  - 201
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/
LA  - en
ID  - SM_2010_201_7_a6
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T On a~conjecture of Ciliberto
%J Sbornik. Mathematics
%D 2010
%P 1069-1090
%V 201
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/
%G en
%F SM_2010_201_7_a6
I. A. Cheltsov. On a~conjecture of Ciliberto. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1069-1090. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/