On a conjecture of Ciliberto
Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1069-1090 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that a threefold hypersurface of degree $d$ with at most ordinary double points is factorial if it contains no planes and has at most $(d-1)^2$ singular points. Bibliography: 13 titles.
Keywords: ordinary double points, factorial property.
Mots-clés : hypersurfaces
@article{SM_2010_201_7_a6,
     author = {I. A. Cheltsov},
     title = {On a~conjecture of {Ciliberto}},
     journal = {Sbornik. Mathematics},
     pages = {1069--1090},
     year = {2010},
     volume = {201},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - On a conjecture of Ciliberto
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1069
EP  - 1090
VL  - 201
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/
LA  - en
ID  - SM_2010_201_7_a6
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T On a conjecture of Ciliberto
%J Sbornik. Mathematics
%D 2010
%P 1069-1090
%V 201
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/
%G en
%F SM_2010_201_7_a6
I. A. Cheltsov. On a conjecture of Ciliberto. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1069-1090. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/

[1] C. Ciliberto, V. Di Gennaro, “Factoriality of certain hypersurfaces of $\mathbb P^4$ with ordinary double points”, Algebraic transformation groups and algebraic varieties (Vienna, Austria, 2001), Encyclopaedia Math. Sci., 132, Springer-Verlag, Berlin, 2004, 1–7 | MR | Zbl

[2] I. Cheltsov, “Nonrational nodal quartic threefolds”, Pacific J. Math., 226:1 (2006), 65–81 | DOI | MR | Zbl

[3] K. A. Shramov, “$\mathbb Q$-factorial quartic threefolds”, Sb. Math., 198:8 (2007), 1165–1174 | DOI | MR | Zbl

[4] A. A. du Plessis, C. T. C. Wall, “Singular hypersurfaces, versality, and Gorenstein algebras”, J. Algebraic Geom., 9:2 (2000), 309–322 | MR | Zbl

[5] I. Cheltsov, “On factoriality of nodal threefolds”, J. Algebraic Geom., 14:4 (2005), 663–690 | MR | Zbl

[6] I. Cheltsov, J. Park, “Factorial hypersurfaces in $\mathbb{P}^4$ with nodes”, Geom. Dedicata, 121:1 (2006), 205–219 | DOI | MR | Zbl

[7] D. Kosta, “Factoriality condition of some nodal threefolds in $\mathbb{P}^4$”, Manuscripta Math., 127:2 (2008), 151–166 | DOI | MR | Zbl

[8] I. Cheltsov, “Points in projective spaces and applications”, J. Differential Geom., 81:3 (2009), 575–599 | MR | Zbl

[9] I. Cheltsov, “Factorial threefold hypersurfaces”, J. Algebraic Geom. (to appear)

[10] E. D. Davis, A. V. Geramita, F. Orecchia, “Gorenstein algebras and the Cayley–Bacharach theorem”, Proc. Amer. Math. Soc., 93:4 (1985), 593–597 | DOI | MR | Zbl

[11] D. Eisenbud, J.-H. Koh, “Remarks on points in a projective space”, Commutative algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., 15, Springer-Verlag, New York, 1989, 157–172 | MR | Zbl

[12] E. D. Davis, A. V. Geramita, “Birational morphisms to $\mathbb{P}^{2}$: an ideal-theoretic perspective”, Math. Ann., 279:3 (1988), 435–448 | DOI | MR | Zbl

[13] A. Dimca, “Betti numbers of hypersurfaces and defects of linear systems”, Duke Math. J., 60:1 (1990), 285–298 | DOI | MR | Zbl