On a~conjecture of Ciliberto
Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1069-1090
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a threefold hypersurface of degree $d$ with at most ordinary double points is factorial if it contains no planes and has at most $(d-1)^2$ singular points.
Bibliography: 13 titles.
Keywords:
ordinary double points, factorial property.
Mots-clés : hypersurfaces
Mots-clés : hypersurfaces
@article{SM_2010_201_7_a6,
author = {I. A. Cheltsov},
title = {On a~conjecture of {Ciliberto}},
journal = {Sbornik. Mathematics},
pages = {1069--1090},
publisher = {mathdoc},
volume = {201},
number = {7},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/}
}
I. A. Cheltsov. On a~conjecture of Ciliberto. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1069-1090. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a6/