@article{SM_2010_201_7_a5,
author = {T. A. Sworowska},
title = {Recovering a~function from its trigonometric integral},
journal = {Sbornik. Mathematics},
pages = {1053--1068},
year = {2010},
volume = {201},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a5/}
}
T. A. Sworowska. Recovering a function from its trigonometric integral. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1053-1068. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a5/
[1] A. Zygmund, Trigonometric series, v. I, II, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl
[2] A. Denjoy, “Une extension de l'intégrale de M. Lebesgue”, C. R. Acad. Sci. Paris, 154 (1912), 859–862 | Zbl
[3] D. Preiss, B. S. Thomson, “The approximate symmetric integral”, Canad. J. Math., 41:3 (1989), 508–555 | MR | Zbl
[4] K. M. Ostaszewski, Henstock integral in the plane, Mem. Amer. Math. Soc., 63, No 353, Amer. Math. Soc., Providence, RI, 1986 | MR
[5] B. S. Thomson, Symmetric properties of real functions, Monogr. Textbooks Pure Appl. Math., 183, Marcel Dekker, New York, 1994 | MR | Zbl
[6] G. G. Gevorkyan, “O edinstvennosti integralov Fure, skhodyaschikhsya v metrikakh $L_p$, $p>0$, na kazhdom konechnom intervale”, Dokl. AN Arm. SSR, 84:1 (1987), 21–25 | MR | Zbl
[7] N. Wiener, The Fourier integral and certain of its applications, Dover, New York, 1959 | MR | Zbl | Zbl
[8] N. Wiener, “Generalized harmonic analysis”, Acta Math., 55:1 (1930), 117–258 | DOI | MR | Zbl
[9] S. Bochner, Lectures on Fourier integrals, Princeton Univ. Press, Princeton, NJ, 1959 | MR | Zbl | Zbl
[10] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1974 | MR | Zbl