Recovering a~function from its trigonometric integral
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1053-1068
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The approximate symmetric Henstock-Kurzweil integral is shown as solving the problem of the recovery of a function from its trigonometric integral. This being so, we generalize Offord's theorem, which is an analogue of de la Vallée Poussin's theorem for trigonometric series. A new condition for a function to be representable by a singular Fourier integral is also obtained.
Bibliography: 10 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
trigonometric integral, approximate symmetric integral, Preiss-Thomson theorem, Offord's theorem, singular Fourier integral.
                    
                    
                    
                  
                
                
                @article{SM_2010_201_7_a5,
     author = {T. A. Sworowska},
     title = {Recovering a~function from its trigonometric integral},
     journal = {Sbornik. Mathematics},
     pages = {1053--1068},
     publisher = {mathdoc},
     volume = {201},
     number = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a5/}
}
                      
                      
                    T. A. Sworowska. Recovering a~function from its trigonometric integral. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1053-1068. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a5/
