Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane
Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1029-1051 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of rolling of a sphere over a plane without slipping or twisting is considered. It is required to roll the sphere from one contact configuration into another one so that the curve traced by the contact point be of minimum length. Extremal trajectories in this problem were described by Arthur, Walsh and Jurdjevic. In this work, discrete and continuous symmetries of the problem are constructed and fixed points of the action of these symmetries in the inverse image and image of the exponential map are studied. This analysis is used to derive necessary conditions for optimality; namely, upper bounds on the cut time along the extremal trajectories. Bibliography: 21 titles.
Keywords: optimal control, geometric methods, symmetries, rolling of surfaces, Euler elastica.
@article{SM_2010_201_7_a4,
     author = {Yu. L. Sachkov},
     title = {Maxwell strata and symmetries in the problem of optimal rolling of a~sphere over a~plane},
     journal = {Sbornik. Mathematics},
     pages = {1029--1051},
     year = {2010},
     volume = {201},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a4/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 1029
EP  - 1051
VL  - 201
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_7_a4/
LA  - en
ID  - SM_2010_201_7_a4
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane
%J Sbornik. Mathematics
%D 2010
%P 1029-1051
%V 201
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2010_201_7_a4/
%G en
%F SM_2010_201_7_a4
Yu. L. Sachkov. Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1029-1051. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a4/

[1] Robot motion planning and control, Lecture Notes in Control and Inform. Sci., 229, Springer-Verlag, Berlin–Heidelberg, 1998 | MR

[2] Z. Li, J. Canny, “Motion of two rigid bodies with rolling constraint”, IEEE Trans. on Robotics and Automation, 6:1 (1990), 62–72 | DOI

[3] A. Marigo, A. Bicchi, “Rolling bodies with regular surface: the holonomic case”, Differential geometry and control (Boulder, CO, 1997), Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI, 1999, 241–256 | MR | Zbl

[4] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005 | Zbl

[5] J. M. Hammersley, “Oxford commemoration ball”, Probability, statistics and analysis, London Math. Soc. Lecture Note Ser., 79, Cambridge Univ. Press, Cambridge–New York, 1983, 112–142 | MR | Zbl

[6] A. M. Arthur, G. R. Walsh, “On Hammersley's minimum problem for a rolling sphere”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 529–534 | DOI | MR | Zbl

[7] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl

[8] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[9] L. Eiler, Metod nakhozhdeniya krivykh linii, obladayuschikh svoistvami maksimuma ili minimuma, ili reshenie izoperimetricheskoi zadachi, vzyatoi v samom shirokom smysle, GTTI, M.–L., 1934

[10] A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl

[11] Yu. L. Sachkov, “The Maxwell set in the generalized Dido problem”, Sb. Math., 197:4 (2006), 595–621 | DOI | MR | Zbl

[12] Yu. L. Sachkov, “Maxwell strata in the Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR

[13] Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16 (2009) | DOI

[14] O. Myasnichenko, “Nilpotent $(3,6)$ sub-Riemannian problem”, J. Dynam. Control Systems, 8:4 (2002), 573–597 | DOI | MR | Zbl

[15] Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem”, Sb. Math., 197:2 (2006), 235–257 | DOI | MR | Zbl

[16] U. Boscain, F. Rossi,, “Invariant Carnot–Caratheodory metrics on $S^3$, $\mathrm{SO}(3)$, $\mathrm{SL}(2)$, and Lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl

[17] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Selected works. Vol. 4. The mathematical theory of optimal processes, Classics Soviet Math., Gordon Breach, New York, 1986 | MR | MR | Zbl | Zbl

[18] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | MR | Zbl

[19] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | Zbl

[20] L. S. Pontrjagin, Verallgemeinerungen der Zahlen, Akademie-Verlag, Berlin, 1991 | MR | MR | Zbl | Zbl

[21] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl | Zbl