@article{SM_2010_201_7_a4,
author = {Yu. L. Sachkov},
title = {Maxwell strata and symmetries in the problem of optimal rolling of a~sphere over a~plane},
journal = {Sbornik. Mathematics},
pages = {1029--1051},
year = {2010},
volume = {201},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a4/}
}
Yu. L. Sachkov. Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 1029-1051. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a4/
[1] Robot motion planning and control, Lecture Notes in Control and Inform. Sci., 229, Springer-Verlag, Berlin–Heidelberg, 1998 | MR
[2] Z. Li, J. Canny, “Motion of two rigid bodies with rolling constraint”, IEEE Trans. on Robotics and Automation, 6:1 (1990), 62–72 | DOI
[3] A. Marigo, A. Bicchi, “Rolling bodies with regular surface: the holonomic case”, Differential geometry and control (Boulder, CO, 1997), Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI, 1999, 241–256 | MR | Zbl
[4] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005 | Zbl
[5] J. M. Hammersley, “Oxford commemoration ball”, Probability, statistics and analysis, London Math. Soc. Lecture Note Ser., 79, Cambridge Univ. Press, Cambridge–New York, 1983, 112–142 | MR | Zbl
[6] A. M. Arthur, G. R. Walsh, “On Hammersley's minimum problem for a rolling sphere”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 529–534 | DOI | MR | Zbl
[7] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl
[8] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[9] L. Eiler, Metod nakhozhdeniya krivykh linii, obladayuschikh svoistvami maksimuma ili minimuma, ili reshenie izoperimetricheskoi zadachi, vzyatoi v samom shirokom smysle, GTTI, M.–L., 1934
[10] A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl
[11] Yu. L. Sachkov, “The Maxwell set in the generalized Dido problem”, Sb. Math., 197:4 (2006), 595–621 | DOI | MR | Zbl
[12] Yu. L. Sachkov, “Maxwell strata in the Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR
[13] Yu. L. Sachkov, “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16 (2009) | DOI
[14] O. Myasnichenko, “Nilpotent $(3,6)$ sub-Riemannian problem”, J. Dynam. Control Systems, 8:4 (2002), 573–597 | DOI | MR | Zbl
[15] Yu. L. Sachkov, “Discrete symmetries in the generalized Dido problem”, Sb. Math., 197:2 (2006), 235–257 | DOI | MR | Zbl
[16] U. Boscain, F. Rossi,, “Invariant Carnot–Caratheodory metrics on $S^3$, $\mathrm{SO}(3)$, $\mathrm{SL}(2)$, and Lens spaces”, SIAM J. Control Optim., 47:4 (2008), 1851–1878 | DOI | MR | Zbl
[17] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Selected works. Vol. 4. The mathematical theory of optimal processes, Classics Soviet Math., Gordon Breach, New York, 1986 | MR | MR | Zbl | Zbl
[18] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | MR | Zbl
[19] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | Zbl
[20] L. S. Pontrjagin, Verallgemeinerungen der Zahlen, Akademie-Verlag, Berlin, 1991 | MR | MR | Zbl | Zbl
[21] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl | Zbl