Mots-clés : parabolic equation
@article{SM_2010_201_7_a3,
author = {S. P. Degtyarev},
title = {The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a~conical point},
journal = {Sbornik. Mathematics},
pages = {999--1028},
year = {2010},
volume = {201},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a3/}
}
TY - JOUR AU - S. P. Degtyarev TI - The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a conical point JO - Sbornik. Mathematics PY - 2010 SP - 999 EP - 1028 VL - 201 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2010_201_7_a3/ LA - en ID - SM_2010_201_7_a3 ER -
%0 Journal Article %A S. P. Degtyarev %T The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a conical point %J Sbornik. Mathematics %D 2010 %P 999-1028 %V 201 %N 7 %U http://geodesic.mathdoc.fr/item/SM_2010_201_7_a3/ %G en %F SM_2010_201_7_a3
S. P. Degtyarev. The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a conical point. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 999-1028. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a3/
[1] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Mosc. Math. Soc., 16 (1967), 227–313 | MR | Zbl | Zbl
[2] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. I, Oper. Theory Adv. Appl., 111, Basel, Birkhäuser, 2000 | MR | Zbl
[3] V. Maz'ya, S. Nazarov, B. Plamenevskii, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. II, Oper. Theory Adv. Appl., 112, Basel, Birkhäuser, 2000 | MR | Zbl
[4] V. G. Maz'ya, R. Mahnke, “Asymptotics of the solution of a boundary integral equation under a small perturbation of a corner”, Z. Anal. Anwendungen, 11:2 (1992), 173–182 | MR | Zbl
[5] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_{p}$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 81:1 (1978), 25–82 | DOI | MR | Zbl
[6] V. G. Maz'ya, B. A. Plamenevskii, “Estimates of Green's functions and Schauder estimates for solutions of elliptic boundary problems in a dihedral angle”, Siberian Math. J., 19:5 (1978), 752–764 | DOI | MR | Zbl | Zbl
[7] V. Zaionchkovskii, V. A. Solonnikov, “Neumann problem for second-order elliptic equations in domains with edges on the boundary”, J. Soviet Math., 27:2 (1984), 2561–2586 | DOI | MR | Zbl | Zbl
[8] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl
[9] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[10] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, Math. Surveys Monogr., 85, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[11] V. A. Solonnikov, E. V. Frolova, “Investigation of a problem for the Laplace equation with a boundary condition of a special form in a plane angle”, J. Soviet Math., 62:3 (1991), 2819–2831 | MR | Zbl | Zbl
[12] P. Grisvard, Elliptic problems in nonsmooth domains, Monogr. Stud. Math., 24, Pitman, Boston, MA, 1985 | MR | Zbl
[13] M. Bochniak, M. Borsuk, “Dirichlet problem for linear elliptic equations degenerating at a conical boundary point”, Analysis (Munich), 23:3 (2003), 225–248 | MR | Zbl
[14] M. Borsuk, V. Kondratiev, Elliptic boundary value problems of second order in piecewise smooth domains, North-Holland Math. Library, 69, Elsevier, Amsterdam, 2006 | MR | Zbl
[15] M. Borsuk, “Degenerate elliptic boundary-value problems of second order in nonsmooth domains”, J. Math. Sci. (N. Y.), 146:5 (2007), 6071–6212 | DOI | MR | Zbl
[16] V. A. Solonnikov, “Solvability of the classical initial-boundary-value problems for the heat-conduction equation in a dihedral angle”, J. Soviet Math., 32:5 (1986), 526–546 | DOI | MR | Zbl | Zbl
[17] V. A. Kozlov, V. G. Maz'ya, “Characteristics of solutions of first boundary value problem for thermal conductivity equation in domains with conic points. I”, Soviet Math. (Iz. VUZ), 31:2 (1987), 61–74 | MR | Zbl
[18] V. A. Kozlov, V. G. Maz'ya, “Characteristics of solutions of first boundary value problem for thermal conductivity equation in domains with conic points. II”, Soviet Math. (Iz. VUZ), 31:3 (1987), 49–57 | MR | Zbl
[19] V. A. Kozlov, “Coefficients in the asymptotic solutions of the Cauchy boundary-value parabolic problems in domains with a conical point”, Siberian Math. J., 29:2 (1988), 222–233 | DOI | MR | Zbl | Zbl
[20] V. A. Kozlov, “Asymptotics as $t\to0$ of solutions of the heat equation in a domain with a conical point”, Math. USSR-Sb., 64:2 (1989), 383–395 | DOI | MR | Zbl
[21] V. A. Solonnikov, E. V. Frolova, “On a problem with the third boundary condition for the Laplace equation in a plane angle, and its applications to parabolic problems”, Leningrad Math. J., 2:4 (1991), 891–916 | MR | Zbl | Zbl
[22] M. G. Garroni, V. A. Solonnikov, M. A. Vivaldi, “On the oblique derivative problem in an infinite angle”, Topol. Methods Nonlinear Anal., 7:2 (1996), 299–325 | MR | Zbl
[23] V. A. Solonnikov, E. V. Frolova, “On a certain nonstationary problem in a dihedral angle. II”, J. Math. Sci., 70:3 (1994), 1841–1846 | DOI | MR | Zbl
[24] M. G. Garroni, V. A. Solonnikov, M. A. Vivaldi, “Existence and regularity results for oblique derivative problems for heat equations in an angle”, Proc. Roy. Soc. Edinburgh Sect. A, 128:1 (1998), 47–79 | MR | Zbl
[25] V. A. Solonnikov, “$L_p$-estimates for solutions of the heat equation in a dihedral angle”, Rend. Mat. Appl. (7), 21:1–4 (2001), 1–15 | MR | Zbl
[26] A. I. Nazarov, “$L_{p}$-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension”, J. Math. Sci. (New York), 106:3 (2001), 2989–3014 | DOI | MR | Zbl
[27] A. I. Nazarov, “Dirichlet problem for quasilinear parabolic equations in domains with smooth closed edges”, Amer. Math. Soc. Transl. Ser. 2, 209:3 (2003), 115–141 | MR | Zbl
[28] A. Azzam, E. Kreyszig, “On solutions of parabolic equations in regions with edges”, Bull. Austral. Math. Soc., 22:2 (1980), 219–230 | DOI | MR | Zbl
[29] A. Azzam, E. Kreyszig, “On parabolic equations in $n$ space variables and their solutions in regions with edges”, Hokkaido Math. J., 9:2 (1980), 140–154 | MR | Zbl
[30] A. Azzam, E. Kreyszig, “Smoothness of solutions of parabolic equations in regions with edges”, Nagoya Math. J., 84 (1981), 159–168 | MR | Zbl
[31] A. Azzam, “On mixed boundary value problems for parabolic equations in singular domains”, Osaka J. Math., 22:4 (1985), 691–696 | MR | Zbl
[32] A. Azzam, “On the behavior of solutions of elliptic and parabolic equations at a crack”, Hokkaido Math. J., 19:2 (1990), 339–344 | MR | Zbl
[33] V. N. Aref'ev, L. A. Bagirov, “Solutions of the heat equation in domains with singularities”, Math. Notes, 64:2 (1998), 139–153 | DOI | MR | Zbl
[34] D. Guidetti, “The mixed Cauchy–Dirichlet problem for the heat equation in a plane angle in spaces of Hölder-continuous functions”, Adv. Differential Equations, 6:8 (2001), 897–930 | MR | Zbl
[35] B. V. Bazalii, S. P. Degtyarev, “On one boundary-value problem for a strongly degenerate second-order elliptic equation in an angular domain”, Ukrainian Math. J, 59:7 (2007), 955–975 | DOI | MR | Zbl
[36] A. Venni, “Maximal regularity for a singular parabolic problem”, Rend. Sem. Mat. Univ. Politec. Torino, 52:1 (1994), 87–101 | MR | Zbl
[37] Can Zui Ho, G. I. Eskin, “Boundary value problems for parabolic systems of pseudodifferential equations”, Soviet Math. Dokl., 12 (1971), 739–743 | MR | Zbl
[38] S. Shmarev, Differentiability and analyticity of solutions and interfaces in multidimensional reaction-diffusion equation, Universidad de Oviedo, Departamento de Matematicas, 2001, 51 pp.
[39] S. I. Shmarev, “Interfaces in multidimensional diffusion equations with absorption terms”, Nonlinear Anal., 53:6 (2003), 791–828 | DOI | MR | Zbl
[40] I. D. Pukal's'kyi, “Cauchy problem for nonuniformly parabolic equations with degeneracy”, Ukrainian Math. J, 55:11 (2003), 1828–1840 | DOI | MR | Zbl
[41] S. P. Degtyarev, “O razreshimosti pervoi nachalno-kraevoi zadachi dlya vyrozhdayuschikhsya parabolicheskikh uravnenii v oblastyakh s neregulyarnoi granitsei”, Ukr. matem. vest., 5:1 (2008), 59–82 | MR
[42] O. A. Ladyż̌enskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl
[43] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[44] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Math. Sci. Engrg., 46, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl
[45] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York–London–Toronto, ON, 1980 | MR | MR | Zbl | Zbl
[46] P. Daskalopoulos, R. Hamilton, “Regularity of the free boundary for the porous medium equation”, J. Amer. Math. Soc., 11:4 (1998), 899–965 | DOI | MR | Zbl
[47] B. V. Bazaliy, N. V. Krasnoshchok, “Regularity of a solution to the multi-dimensional free boundary problem for the porous medium equation”, Siberian Adv. Math., 13:3 (2003), 1–53 | MR | MR | Zbl | Zbl
[48] O. A. Oleinik, E. V. Radkevich, Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi, Itogi nauki. Ser. Matematika. Mat. anal. 1969, VINITI, M., 1971 | MR | Zbl
[49] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl