Convergence of simple partial fractions in $L_p(\mathbb R)$
Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 985-997 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence in the $L_p(\mathbb R)$-metric of series whose partial sums are simple partial fractions is investigated. Several convergence conditions in terms of sequences of poles of these series are obtained. Bibliography: 12 titles.
Keywords: duality, sparse sequences.
Mots-clés : simple partial fractions
@article{SM_2010_201_7_a2,
     author = {V. I. Danchenko},
     title = {Convergence of simple partial fractions in~$L_p(\mathbb R)$},
     journal = {Sbornik. Mathematics},
     pages = {985--997},
     year = {2010},
     volume = {201},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a2/}
}
TY  - JOUR
AU  - V. I. Danchenko
TI  - Convergence of simple partial fractions in $L_p(\mathbb R)$
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 985
EP  - 997
VL  - 201
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_7_a2/
LA  - en
ID  - SM_2010_201_7_a2
ER  - 
%0 Journal Article
%A V. I. Danchenko
%T Convergence of simple partial fractions in $L_p(\mathbb R)$
%J Sbornik. Mathematics
%D 2010
%P 985-997
%V 201
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2010_201_7_a2/
%G en
%F SM_2010_201_7_a2
V. I. Danchenko. Convergence of simple partial fractions in $L_p(\mathbb R)$. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 985-997. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a2/

[1] V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349 | DOI | MR | Zbl

[2] P. A. Borodin, O. N. Kosukhin, “Approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl

[3] P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148 | DOI | MR | Zbl

[4] P. Koosis, Introduction to $H^p$ spaces with an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., 40, Cambridge Univ. Press, Cambridge–New York, 1980 | MR | MR | Zbl | Zbl

[5] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl

[6] V. I. Danchenko, “Estimates of derivatives of simplest fractions and other questions”, Sb. Math., 197:4 (2006), 505–524 | DOI | MR | Zbl

[7] V. I. Danchenko, “Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 425–440 | DOI | MR | Zbl

[8] P. A. Borodin, “Estimates of the distances to direct lines and rays from the poles of simplest fractions bounded in the norm of $L_p$ on these sets”, Math. Notes, 82:5–6 (2007), 725–732 | DOI | MR | Zbl

[9] S. Ya. Khavinson, “Ob odnoi ekstremalnoi zadache teorii analiticheskikh funktsii”, UMN, 4:4 (1949), 158–159

[10] A. A. Pekarskii, “Obobschennaya ratsionalnaya approksimatsiya v kruge”, Izv. AN BSSR, 1990, no. 6, 9–14 | MR | Zbl

[11] V. I. Danchenko, “Estimates of Green potentials. Applications”, Sb. Math., 194:1 (2003), 63–88 | DOI | MR | Zbl

[12] V. I. Danchenko, “Several integral estimates of the derivatives of rational functions on sets of finite density”, Sb. Math., 187:10 (1996), 1443–1463 | DOI | MR | Zbl