@article{SM_2010_201_7_a1,
author = {A. A. Vasil'eva},
title = {Estimates for the widths of weighted {Sobolev} classes},
journal = {Sbornik. Mathematics},
pages = {947--984},
year = {2010},
volume = {201},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a1/}
}
A. A. Vasil'eva. Estimates for the widths of weighted Sobolev classes. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 947-984. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a1/
[1] E. N. Batuev, V. D. Stepanov, “Weighted inequalities of Hardy type”, Siberian Math. J., 30:1 (1989), 8–16 | DOI | MR | Zbl
[2] V. D. Stepanov, “Two-weighted estimates of Riemann–Liouville integrals”, Math. USSR-Izv., 36:3 (1991), 669–681 | DOI | MR | Zbl | Zbl
[3] V. D. Stepanov, “Two-weighted estimates for Riemann–Liouville integrals”, Ceskoslov. Akad. Věd. Mat. Ústav., 39, Praha, 1988, 1–28
[4] V. D. Stepanov, “Weighted norm inequalities for integral operators and related topics”, Nonlinear analysis, function spaces and applications, Proceedings of the Spring School (Prague, 1994), v. 5, Prometheus, Praha, 1994, 139–175 | MR | Zbl
[5] V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. (2), 50:1 (1994), 105–120 | MR | Zbl
[6] R. Oǐnarov, “Two-sided norm estimates for certain classes of integral operators”, Proc. Steklov Inst. Math., 204 (1994), 205–214 | MR | Zbl
[7] D. V. Prokhorov, “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc. (2), 61:2 (2000), 617–628 | DOI | MR | Zbl
[8] S. B. Babadzhanov, V. M. Tikhomirov, “O poperechnikakh odnogo klassa v prostranstve $L^p$”, Izv. AN USSR. Cer. fiz.-mat., 11:2 (1967), 24–30 | MR | Zbl
[9] A. P. Buslaev, V. M. Tikhomirov, “Spectra of nonlinear differential equations and widths of Sobolev classes”, Math. USSR-Sb., 71:2 (1992), 427–446 | DOI | MR | Zbl | Zbl
[10] R. S. Ismagilov, “Diameters of sets in normed linear spaces and the approximation of functions by trigonometric polynomials”, Russian Math. Surveys, 29:3 (1974), 169–186 | DOI | MR | Zbl
[11] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI | MR | Zbl | Zbl
[12] V. E. Maiorov, “Diskretizatsiya zadachi o poperechnikakh”, UMN, 30:6 (1975), 179–180 | MR | Zbl
[13] J. I. Makovoz, “O a method for estimation from below of diameters of sets in Banach spaces”, Math. USSR-Sb., 16:1 (1972), 139–146 | DOI | MR | Zbl
[14] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR
[15] V. M. Tikhomirov, “Teoriya priblizhenii”, Analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR | Zbl
[16] A. Pinkus, $n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl
[17] A. Pietsch, “$s$-numbers of operators in Banach spaces”, Studia Math., 51 (1974), 201–223 | MR | Zbl
[18] M. L. Stesin, “Aleksandrov diameters of finite-dimensional sets and classes of smooth functions”, Soviet Math. Dokl., 16 (1975), 252–256 | MR | Zbl
[19] E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets”, Math. USSR-Sb., 48:1 (1984), 173–182 | DOI | MR | Zbl | Zbl
[20] M. A. Lifshits, W. Linde, Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc., 157, no. 745, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[21] D. E. Edmunds, J. Lang, “Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case”, Math. Nachr., 297:7 (2006), 727–742 | DOI | MR | Zbl
[22] D. E. Edmunds, R. Kerman, J. Lang, “Remainder estimates for the approximation numbers of weighted Hardy operators acting on $L^2$”, J. Anal. Math., 85:1 (2001), 225–243 | DOI | MR | Zbl
[23] W. D. Evans, D. J. Harris, J. Lang, “Two-sided estimates for the approximation numbers of Hardy-type operators in $L^\infty$ and $L^1$”, Studia Math., 130:2 (1998), 171–192 | MR | Zbl
[24] J. Lang, “Estimates for the approximation numbers and $n$-widths of the weighted Hardy-type operators”, J. Approx. Theory, 2004
[25] J. Lang, “Improved estimates for the approximation numbers of Hardy-type operators”, J. Approx. Theory, 121:1 (2003), 61–70 | DOI | MR | Zbl
[26] E. N. Lomakina, V. D. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten–von Neumann norms of the Hardy-type integral operators”, Function spaces and applications, Proceedings of Delhi conference (New Delhi, India, 1997), Narosa Publ., New Delhi, 2000, 153–187 | MR | Zbl
[27] E. D. Gluskin, “On the asymptotics of widths and spectra of nonlinear differential equations”, St. Petersburg Math. J., 3:6 (1991), 1303–1312 | MR | Zbl | Zbl
[28] V. N. Konovalov, D. Leviatan, “Kolmogorov and linear widths of weighted Sobolev-type classes on a finite interval”, Anal. Math., 28:4 (2002), 251–278 | DOI | MR | Zbl
[29] E. N. Lomakina, V. D. Stepanov, “Asymptotic estimates for the approximation and entropy numbers of a one-weight Riemann–Liouville operator”, Siberian Adv. Math., 17:1 (2007), 1–36 | DOI | MR | MR | Zbl
[30] A. A. Vasil'eva, “Criterion for the existence of a continuous embedding of a weighted Sobolev class on a closed interval and on a semiaxis”, Russian J. Math. Phys., 16:4 (2009), 543–562 | DOI | MR | Zbl
[31] H. P. Heinig, A. Kufner, “Hardy's inequality for higher order derivatives”, Proc. Steklov Inst. Math., 192 (1992), 113–121 | MR | Zbl | Zbl
[32] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl
[33] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., 94, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl