Extension of zero-dimensional hyperbolic sets to locally maximal ones
Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 935-946

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in any neighbourhood of a zero-dimensional hyperbolic set $F$ (hyperbolic sets are assumed to be compact) there is a locally maximal set $F_1\supset F$. In the proof, several already known or simple results are used, whose statements are given as separate assertions. The main theorem is compared with known related results, whose statements are also presented. (For example, it is known that the existence of $F_1$ is not guaranteed for $F$ of positive dimension.) Bibliography: 7 titles.
Keywords: hyperbolic set, locally maximal, zero-dimensional, shadowing of pseudotrajectories and their families.
@article{SM_2010_201_7_a0,
     author = {D. V. Anosov},
     title = {Extension of zero-dimensional hyperbolic sets to locally maximal ones},
     journal = {Sbornik. Mathematics},
     pages = {935--946},
     publisher = {mathdoc},
     volume = {201},
     number = {7},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_7_a0/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - Extension of zero-dimensional hyperbolic sets to locally maximal ones
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 935
EP  - 946
VL  - 201
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_7_a0/
LA  - en
ID  - SM_2010_201_7_a0
ER  - 
%0 Journal Article
%A D. V. Anosov
%T Extension of zero-dimensional hyperbolic sets to locally maximal ones
%J Sbornik. Mathematics
%D 2010
%P 935-946
%V 201
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_7_a0/
%G en
%F SM_2010_201_7_a0
D. V. Anosov. Extension of zero-dimensional hyperbolic sets to locally maximal ones. Sbornik. Mathematics, Tome 201 (2010) no. 7, pp. 935-946. http://geodesic.mathdoc.fr/item/SM_2010_201_7_a0/