The theory of shell-based $Q$-mappings in geometric function theory
Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 909-934

Voir la notice de l'article provenant de la source Math-Net.Ru

Open, discrete $Q$-mappings in ${\mathbb R}^n$, $n\geqslant2$, $Q\in L^1_{\mathrm{loc}}$, are proved to be absolutely continuous on lines, to belong to the Sobolev class $W_{\mathrm{loc}}^{1,1}$, to be differentiable almost everywhere and to have the $N^{-1}$-property (converse to the Luzin $N$-property). It is shown that a family of open, discrete shell-based $Q$-mappings leaving out a subset of positive capacity is normal, provided that either $Q$ has finite mean oscillation at each point or $Q$ has only logarithmic singularities of order at most $n-1$. Under the same assumptions on $Q$ it is proved that an isolated singularity $x_0\in D$ of an open discrete shell-based $Q$-map $f\colon D\setminus\{x_0\}\to\overline{\mathbb R}{}^n$ is removable; moreover, the extended map is open and discrete. On the basis of these results analogues of the well-known Liouville, Sokhotskii-Weierstrass and Picard theorems are obtained. Bibliography: 34 titles.
Keywords: quasiconformal mappings and their generalizations, moduli of families of curves, capacity, removing singularities of maps, theorems of Liouville, Sokhotskii and Picard type.
@article{SM_2010_201_6_a4,
     author = {R. R. Salimov and E. A. Sevost'yanov},
     title = {The theory of shell-based $Q$-mappings in geometric function theory},
     journal = {Sbornik. Mathematics},
     pages = {909--934},
     publisher = {mathdoc},
     volume = {201},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/}
}
TY  - JOUR
AU  - R. R. Salimov
AU  - E. A. Sevost'yanov
TI  - The theory of shell-based $Q$-mappings in geometric function theory
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 909
EP  - 934
VL  - 201
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/
LA  - en
ID  - SM_2010_201_6_a4
ER  - 
%0 Journal Article
%A R. R. Salimov
%A E. A. Sevost'yanov
%T The theory of shell-based $Q$-mappings in geometric function theory
%J Sbornik. Mathematics
%D 2010
%P 909-934
%V 201
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/
%G en
%F SM_2010_201_6_a4
R. R. Salimov; E. A. Sevost'yanov. The theory of shell-based $Q$-mappings in geometric function theory. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 909-934. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/