The theory of shell-based $Q$-mappings in geometric function theory
Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 909-934 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Open, discrete $Q$-mappings in ${\mathbb R}^n$, $n\geqslant2$, $Q\in L^1_{\mathrm{loc}}$, are proved to be absolutely continuous on lines, to belong to the Sobolev class $W_{\mathrm{loc}}^{1,1}$, to be differentiable almost everywhere and to have the $N^{-1}$-property (converse to the Luzin $N$-property). It is shown that a family of open, discrete shell-based $Q$-mappings leaving out a subset of positive capacity is normal, provided that either $Q$ has finite mean oscillation at each point or $Q$ has only logarithmic singularities of order at most $n-1$. Under the same assumptions on $Q$ it is proved that an isolated singularity $x_0\in D$ of an open discrete shell-based $Q$-map $f\colon D\setminus\{x_0\}\to\overline{\mathbb R}{}^n$ is removable; moreover, the extended map is open and discrete. On the basis of these results analogues of the well-known Liouville, Sokhotskii-Weierstrass and Picard theorems are obtained. Bibliography: 34 titles.
Keywords: quasiconformal mappings and their generalizations, moduli of families of curves, capacity, removing singularities of maps, theorems of Liouville, Sokhotskii and Picard type.
@article{SM_2010_201_6_a4,
     author = {R. R. Salimov and E. A. Sevost'yanov},
     title = {The theory of shell-based $Q$-mappings in geometric function theory},
     journal = {Sbornik. Mathematics},
     pages = {909--934},
     year = {2010},
     volume = {201},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/}
}
TY  - JOUR
AU  - R. R. Salimov
AU  - E. A. Sevost'yanov
TI  - The theory of shell-based $Q$-mappings in geometric function theory
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 909
EP  - 934
VL  - 201
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/
LA  - en
ID  - SM_2010_201_6_a4
ER  - 
%0 Journal Article
%A R. R. Salimov
%A E. A. Sevost'yanov
%T The theory of shell-based $Q$-mappings in geometric function theory
%J Sbornik. Mathematics
%D 2010
%P 909-934
%V 201
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/
%G en
%F SM_2010_201_6_a4
R. R. Salimov; E. A. Sevost'yanov. The theory of shell-based $Q$-mappings in geometric function theory. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 909-934. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/

[1] G. D. Suvorov, Ob iskusstve matematicheskogo issledovaniya, TEAN, Donetsk, 1999

[2] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer-Verlag, New York, 2009 | MR | Zbl

[3] O. Lehto, K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[4] Yu. F. Strugov, “On the compactness of families of mappings that are quasi-conformal in the mean”, Soviet Math. Dokl., 19:6 (1978), 1443–1446 | MR | Zbl

[5] V. M. Miklyukov, Konformnoe otobrazhenie neregulyarnoi poverkhnosti i ego primeneniya, Izd-vo VolGU, Volgograd, 2005

[6] Ch. J. Bishop, V. Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Int. J. Math. Math. Sci., 22 (2003), 1397–1420 | DOI | MR | Zbl

[7] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl

[8] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl

[9] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 448 (1969), 1–40 | MR | Zbl

[10] C. Andreian Cazacu, “On the length-area dilatation”, Complex Var. Theory Appl., 50:7–11 (2005), 765–776 | DOI | MR | Zbl

[11] O. Martio, S. Rickman, J. Väisälä, “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 465 (1970), 1–13 | MR | Zbl

[12] V. M. Miklyukov, “Boundary properties of $n$-dimensional quasi-conformal mappings”, Soviet Math. Dokl., 11 (1970), 969–971 | MR | Zbl

[13] P. Koskela, K. Rajala, “Mappings of finite distortion: removable singularities”, Israel J. Math., 136:1 (2003), 269–283 | DOI | MR | Zbl

[14] K. Rajala, “Mappings of finite distortion: removable singularities for locally homeomorphic mappings”, Proc. Amer. Math. Soc., 132:11 (2004), 3251–3258 | DOI | MR | Zbl

[15] V. I. Kruglikov, “Capacity of condensers and spatial mappings quasiconformal in the mean”, Math. USSR-Sb., 58:1 (1987), 185–205 | DOI | MR | Zbl

[16] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971 | DOI | MR | Zbl

[17] F. W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103:3 (1962), 353–393 | DOI | MR | Zbl

[18] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl

[19] A. A. Ignat'ev, V. I. Ryazanov, “Finite mean oscillation in the mapping theory”, Ukr. Math. Bull., 2:3 (2005), 403–424 | MR | Zbl

[20] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, Berlin–Heidelberg–New York, 1969 | MR | MR | Zbl | Zbl

[21] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., 28, Amer. Math. Soc., New York, 1942 | MR | Zbl

[22] E. F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1961 | MR | MR | Zbl | Zbl

[23] S. Saks, Theory of the integral, Dover Publ., New York, 1937 | MR | Zbl

[24] V. G. Maz'ya, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | MR | MR | Zbl | Zbl

[25] P. Koskela, J. Malý, “Mappings of finite distortion: the zero set of the Jacobian”, J. Eur. Math. Soc. (JEMS), 5:2 (2003), 95–105 | DOI | MR | Zbl

[26] T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2001 | MR | Zbl

[27] T. Iwaniec, V. Šverák, “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118:1 (1993), 181–188 | DOI | MR | Zbl

[28] S. P. Ponomarev, “The $N^{-1}$-property of maps and Luzin's condition $(N)$”, Math. Notes, 58:3 (1995), 960–965 | DOI | MR | Zbl

[29] W. Hurewicz, H. Wallman, Dimension theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, NJ, 1948 | MR | Zbl

[30] C. J. Titus, G. S. Young, “The extension of interiority, with some applications”, Trans. Amer. Math. Soc., 103:2 (1962), 329–340 | DOI | MR | Zbl

[31] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR | Zbl

[32] S. Sto\"ilow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, Paris, 1956 | MR | MR | Zbl | Zbl

[33] V. A. Zorič, “A theorem of M. A. Lavrent'ev on quasiconformal space maps”, Math. USSR-Sb., 3:3 (1967), 389–403 | DOI | MR | Zbl | Zbl

[34] S. Rickman, “On the number of omitted values of entire quasiregular mappings”, J. Analyse Math., 37:1 (1980), 100–117 | DOI | MR | Zbl