@article{SM_2010_201_6_a4,
author = {R. R. Salimov and E. A. Sevost'yanov},
title = {The theory of shell-based $Q$-mappings in geometric function theory},
journal = {Sbornik. Mathematics},
pages = {909--934},
year = {2010},
volume = {201},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/}
}
R. R. Salimov; E. A. Sevost'yanov. The theory of shell-based $Q$-mappings in geometric function theory. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 909-934. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a4/
[1] G. D. Suvorov, Ob iskusstve matematicheskogo issledovaniya, TEAN, Donetsk, 1999
[2] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer-Verlag, New York, 2009 | MR | Zbl
[3] O. Lehto, K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, Berlin–Heidelberg–New York, 1973 | MR | Zbl
[4] Yu. F. Strugov, “On the compactness of families of mappings that are quasi-conformal in the mean”, Soviet Math. Dokl., 19:6 (1978), 1443–1446 | MR | Zbl
[5] V. M. Miklyukov, Konformnoe otobrazhenie neregulyarnoi poverkhnosti i ego primeneniya, Izd-vo VolGU, Volgograd, 2005
[6] Ch. J. Bishop, V. Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Int. J. Math. Math. Sci., 22 (2003), 1397–1420 | DOI | MR | Zbl
[7] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl
[8] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl
[9] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 448 (1969), 1–40 | MR | Zbl
[10] C. Andreian Cazacu, “On the length-area dilatation”, Complex Var. Theory Appl., 50:7–11 (2005), 765–776 | DOI | MR | Zbl
[11] O. Martio, S. Rickman, J. Väisälä, “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 465 (1970), 1–13 | MR | Zbl
[12] V. M. Miklyukov, “Boundary properties of $n$-dimensional quasi-conformal mappings”, Soviet Math. Dokl., 11 (1970), 969–971 | MR | Zbl
[13] P. Koskela, K. Rajala, “Mappings of finite distortion: removable singularities”, Israel J. Math., 136:1 (2003), 269–283 | DOI | MR | Zbl
[14] K. Rajala, “Mappings of finite distortion: removable singularities for locally homeomorphic mappings”, Proc. Amer. Math. Soc., 132:11 (2004), 3251–3258 | DOI | MR | Zbl
[15] V. I. Kruglikov, “Capacity of condensers and spatial mappings quasiconformal in the mean”, Math. USSR-Sb., 58:1 (1987), 185–205 | DOI | MR | Zbl
[16] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971 | DOI | MR | Zbl
[17] F. W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103:3 (1962), 353–393 | DOI | MR | Zbl
[18] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl
[19] A. A. Ignat'ev, V. I. Ryazanov, “Finite mean oscillation in the mapping theory”, Ukr. Math. Bull., 2:3 (2005), 403–424 | MR | Zbl
[20] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag, Berlin–Heidelberg–New York, 1969 | MR | MR | Zbl | Zbl
[21] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., 28, Amer. Math. Soc., New York, 1942 | MR | Zbl
[22] E. F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1961 | MR | MR | Zbl | Zbl
[23] S. Saks, Theory of the integral, Dover Publ., New York, 1937 | MR | Zbl
[24] V. G. Maz'ya, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | MR | MR | Zbl | Zbl
[25] P. Koskela, J. Malý, “Mappings of finite distortion: the zero set of the Jacobian”, J. Eur. Math. Soc. (JEMS), 5:2 (2003), 95–105 | DOI | MR | Zbl
[26] T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2001 | MR | Zbl
[27] T. Iwaniec, V. Šverák, “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118:1 (1993), 181–188 | DOI | MR | Zbl
[28] S. P. Ponomarev, “The $N^{-1}$-property of maps and Luzin's condition $(N)$”, Math. Notes, 58:3 (1995), 960–965 | DOI | MR | Zbl
[29] W. Hurewicz, H. Wallman, Dimension theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, NJ, 1948 | MR | Zbl
[30] C. J. Titus, G. S. Young, “The extension of interiority, with some applications”, Trans. Amer. Math. Soc., 103:2 (1962), 329–340 | DOI | MR | Zbl
[31] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR | Zbl
[32] S. Sto\"ilow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, Paris, 1956 | MR | MR | Zbl | Zbl
[33] V. A. Zorič, “A theorem of M. A. Lavrent'ev on quasiconformal space maps”, Math. USSR-Sb., 3:3 (1967), 389–403 | DOI | MR | Zbl | Zbl
[34] S. Rickman, “On the number of omitted values of entire quasiregular mappings”, J. Analyse Math., 37:1 (1980), 100–117 | DOI | MR | Zbl