Differential properties and attracting sets of a~simplest skew product of interval maps
Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 873-907

Voir la notice de l'article provenant de la source Math-Net.Ru

For a skew product of interval maps with a closed set of periodic points, the dependence of the structure of its $\omega$-limit sets on its differential properties is investigated. An example of a map in this class is constructed which has the maximal differentiability properties (within a certain subclass) with respect to the variable $x$, is $C^1$-smooth in the $y$-variable and has one-dimensional $\omega$-limit sets. Theorems are proved that give necessary conditions for one-dimensional $\omega$-limit sets to exist. One of them is formulated in terms of the divergence of the series consisting of the values of a function of $x$; this function is the $C^{0}$-norm of the deviation of the restrictions of the fibre maps to some nondegenerate closed interval from the identity on the same interval. Another theorem is formulated in terms of the properties of the partial derivative with respect to $x$ of the fibre maps. A complete description is given of the $\omega$-limit sets of certain class of $C^1$-smooth skew products satisfying some natural conditions. Bibliography: 33 titles.
Keywords: skew product, periodic point, $\omega$-limit set
Mots-clés : divergent series.
@article{SM_2010_201_6_a3,
     author = {L. S. Efremova},
     title = {Differential properties and attracting sets of a~simplest skew product of interval maps},
     journal = {Sbornik. Mathematics},
     pages = {873--907},
     publisher = {mathdoc},
     volume = {201},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - Differential properties and attracting sets of a~simplest skew product of interval maps
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 873
EP  - 907
VL  - 201
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/
LA  - en
ID  - SM_2010_201_6_a3
ER  - 
%0 Journal Article
%A L. S. Efremova
%T Differential properties and attracting sets of a~simplest skew product of interval maps
%J Sbornik. Mathematics
%D 2010
%P 873-907
%V 201
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/
%G en
%F SM_2010_201_6_a3
L. S. Efremova. Differential properties and attracting sets of a~simplest skew product of interval maps. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 873-907. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/