Differential properties and attracting sets of a simplest skew product of interval maps
Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 873-907 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a skew product of interval maps with a closed set of periodic points, the dependence of the structure of its $\omega$-limit sets on its differential properties is investigated. An example of a map in this class is constructed which has the maximal differentiability properties (within a certain subclass) with respect to the variable $x$, is $C^1$-smooth in the $y$-variable and has one-dimensional $\omega$-limit sets. Theorems are proved that give necessary conditions for one-dimensional $\omega$-limit sets to exist. One of them is formulated in terms of the divergence of the series consisting of the values of a function of $x$; this function is the $C^{0}$-norm of the deviation of the restrictions of the fibre maps to some nondegenerate closed interval from the identity on the same interval. Another theorem is formulated in terms of the properties of the partial derivative with respect to $x$ of the fibre maps. A complete description is given of the $\omega$-limit sets of certain class of $C^1$-smooth skew products satisfying some natural conditions. Bibliography: 33 titles.
Keywords: skew product, periodic point, $\omega$-limit set
Mots-clés : divergent series.
@article{SM_2010_201_6_a3,
     author = {L. S. Efremova},
     title = {Differential properties and attracting sets of a~simplest skew product of interval maps},
     journal = {Sbornik. Mathematics},
     pages = {873--907},
     year = {2010},
     volume = {201},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - Differential properties and attracting sets of a simplest skew product of interval maps
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 873
EP  - 907
VL  - 201
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/
LA  - en
ID  - SM_2010_201_6_a3
ER  - 
%0 Journal Article
%A L. S. Efremova
%T Differential properties and attracting sets of a simplest skew product of interval maps
%J Sbornik. Mathematics
%D 2010
%P 873-907
%V 201
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/
%G en
%F SM_2010_201_6_a3
L. S. Efremova. Differential properties and attracting sets of a simplest skew product of interval maps. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 873-907. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/

[1] A. Denjoy, “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math. Pures Appl. (9), 11:4 (1932), 333–375 | Zbl

[2] A. Denjoy, “Les trajectoires à la surface du tore”, C. R. Acad. Sci. Paris, 223 (1946), 5–8 | MR | Zbl

[3] A. Denjoy, “Sur les caractéristiques à la surface du tore”, C. R. Acad. Sci. Paris, 194 (1932), 830–833 | Zbl

[4] A. B. Krygin, “$\omega$-Limit sets of smooth cylindrical cascades”, Math. Notes, 23:6 (1978), 479–485 | DOI | MR | Zbl | Zbl

[5] L. S. Efremova, “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamicheskie sistemy i nelineinye yavleniya, In-t matem. AN Ukrainy, Kiev, 1990, 15–25 | MR

[6] P. E. Kloeden, “On Sharkovsky's cycle coexistence ordering”, Bull. Austral. Math. Soc., 20:2 (1979), 171–177 | DOI | MR | Zbl

[7] D. V. Anosov, “Dynamical systems in the 1960s: the hyperbolic revolution”, Mathematical events of the twentieth century, Springer-Verlag, Berlin, 2006, 1–17 | MR | Zbl | Zbl

[8] D. A. Raikov, Odnomernyi matematicheskii analiz, Vysshaya shkola, M., 1982 | Zbl

[9] V. V. Fedorenko, A. N. Sharkovskii, “Nepreryvnye otobrazheniya intervala s zamknutym mnozhestvom periodicheskikh tochek”, Issledovaniya differentsialnykh i differentsialno-raznostnykh uravnenii, In-t matem. AN Ukrainy, Kiev, 1980, 137–145 | MR | Zbl

[10] M. Ding, C. Grebogi, E. Ott, “Evolution of attractors in quasiperiodically forced systems: from quasiperiodic to strange nonchaotic to chaotic”, Phys. Rev. A, 39:5 (1989), 2593–2598 | DOI

[11] A. S. Pikovsky, U. Feudal, “Characterizing strange nonchaotic attractors”, Chaos, 5:1 (1995), 253–260 | DOI | MR | Zbl

[12] Z. I. Bezhaeva, V. I. Oseledets, “An example of a strange nonchaotic attractor”, Funct. Anal. Appl., 30:4 (1996), 223–229 | DOI | MR | Zbl

[13] T. H. Jäger, “On the structure of strange non-chaotic attractors in pinched skew products”, Ergodic Theory Dynam. Systems, 27:2 (2007), 493–510 | DOI | MR | Zbl

[14] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[15] L. S. Efremova, “Attracting sets and smoothness of a simplest skew product of interval maps”, Book of abstracts, Intern. Conf. “Differential equations and related topics” (Moscow, 2007), Moscow Univ. Press, Moscow, 2007, 85–86

[16] N. P. Erugin, Neyavnye funktsii, Izd-vo Leningr. un-ta, L., 1956 | MR | Zbl

[17] A. N. Sharkovskii, “O tsiklakh i strukture nepreryvnogo otobrazheniya”, Ukr. matem. zhurn., 17:3 (1965), 104–111 | MR

[18] A. N. Sharkovskiǐ, “Attracting and attracted sets”, Soviet Math. Dokl., 6 (1965), 268–270 | MR | Zbl

[19] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960 | MR | MR | Zbl | Zbl

[20] E. V. Blinova, L. S. Efremova, “On $\Omega$-blow-ups in the simplest $C^1$-smooth skew products of interval mappings”, J. Math. Sci., 157:3 (2009), 456–465 | DOI | Zbl

[21] S. F. Kolyada, “On dynamics of triangular maps of the square”, Ergodic Theory Dynam. Systems, 12:4 (1992), 749–768 | DOI | MR | Zbl

[22] Z. Kočan, “The problem of classification of triangular maps with zero topological entropy”, Ann. Math. Sil., 13 (1999), 181–192 | MR | Zbl

[23] F. Balibrea, J. L. Garcia Guirao, J. I. Muñoz Casado, “Description of $\omega$-limit sets of a triangular map on $I^2$”, Far East J. Dyn. Syst., 3:1 (2001), 87–101 | MR | Zbl

[24] F. Balibrea, J. L. Garcia Guirao, J. I. Muñoz Casado, “A triangular map on $I^2$ whose $\omega$-limit sets are all compact intervals of $\{0\}\times I$”, Discrete Contin. Dyn. Syst., 8:4 (2002), 983–994 | DOI | MR | Zbl

[25] F. B. Gallego, J. L. Garcia Guirao, J. I. Muñoz Casado, “On $\omega$-limit sets of triangular maps on the unit cube”, J. Difference Equ. Appl., 9:3–4 (2003), 289–304 | DOI | MR | Zbl

[26] Sh. I. Akhalaya, A. M. Stepin, “Ob invariantnykh merakh neszhimayuschikh otobrazhenii”, Soobsch. AN GSSR, 100:3 (1980), 549–552 | MR | Zbl

[27] Sh. I. Akhalaya, A. M. Stepin, “On absolutely continuous invariant measures of noncontracting transformations of a circle”, Proc. Steklov Inst. Math., 244 (2004), 18–28 | MR | Zbl

[28] V. P. Mikhajlov, Partial differential equations, Mir, Moscow, 1978 | MR | MR | Zbl | Zbl

[29] M. Misiurewicz, “Structure of mappings of an interval with zero entropy”, Inst. Hautes Études Sci. Publ. Math., 53:1 (1981), 5–16 | DOI | MR | Zbl

[30] K. Kuratowski, Topology, v. 1, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl

[31] I. P. Natanson, Theory of functions of a real variable, Ungar Publ., New York, 1955 | MR | MR | Zbl | Zbl

[32] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR

[33] V. A. Zorich, Mathematical analysis, v. I, Universitext, Springer-Verlag, Berlin, 2004 | MR | MR | Zbl | Zbl