Mots-clés : divergent series.
@article{SM_2010_201_6_a3,
author = {L. S. Efremova},
title = {Differential properties and attracting sets of a~simplest skew product of interval maps},
journal = {Sbornik. Mathematics},
pages = {873--907},
year = {2010},
volume = {201},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/}
}
L. S. Efremova. Differential properties and attracting sets of a simplest skew product of interval maps. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 873-907. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a3/
[1] A. Denjoy, “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math. Pures Appl. (9), 11:4 (1932), 333–375 | Zbl
[2] A. Denjoy, “Les trajectoires à la surface du tore”, C. R. Acad. Sci. Paris, 223 (1946), 5–8 | MR | Zbl
[3] A. Denjoy, “Sur les caractéristiques à la surface du tore”, C. R. Acad. Sci. Paris, 194 (1932), 830–833 | Zbl
[4] A. B. Krygin, “$\omega$-Limit sets of smooth cylindrical cascades”, Math. Notes, 23:6 (1978), 479–485 | DOI | MR | Zbl | Zbl
[5] L. S. Efremova, “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamicheskie sistemy i nelineinye yavleniya, In-t matem. AN Ukrainy, Kiev, 1990, 15–25 | MR
[6] P. E. Kloeden, “On Sharkovsky's cycle coexistence ordering”, Bull. Austral. Math. Soc., 20:2 (1979), 171–177 | DOI | MR | Zbl
[7] D. V. Anosov, “Dynamical systems in the 1960s: the hyperbolic revolution”, Mathematical events of the twentieth century, Springer-Verlag, Berlin, 2006, 1–17 | MR | Zbl | Zbl
[8] D. A. Raikov, Odnomernyi matematicheskii analiz, Vysshaya shkola, M., 1982 | Zbl
[9] V. V. Fedorenko, A. N. Sharkovskii, “Nepreryvnye otobrazheniya intervala s zamknutym mnozhestvom periodicheskikh tochek”, Issledovaniya differentsialnykh i differentsialno-raznostnykh uravnenii, In-t matem. AN Ukrainy, Kiev, 1980, 137–145 | MR | Zbl
[10] M. Ding, C. Grebogi, E. Ott, “Evolution of attractors in quasiperiodically forced systems: from quasiperiodic to strange nonchaotic to chaotic”, Phys. Rev. A, 39:5 (1989), 2593–2598 | DOI
[11] A. S. Pikovsky, U. Feudal, “Characterizing strange nonchaotic attractors”, Chaos, 5:1 (1995), 253–260 | DOI | MR | Zbl
[12] Z. I. Bezhaeva, V. I. Oseledets, “An example of a strange nonchaotic attractor”, Funct. Anal. Appl., 30:4 (1996), 223–229 | DOI | MR | Zbl
[13] T. H. Jäger, “On the structure of strange non-chaotic attractors in pinched skew products”, Ergodic Theory Dynam. Systems, 27:2 (2007), 493–510 | DOI | MR | Zbl
[14] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[15] L. S. Efremova, “Attracting sets and smoothness of a simplest skew product of interval maps”, Book of abstracts, Intern. Conf. “Differential equations and related topics” (Moscow, 2007), Moscow Univ. Press, Moscow, 2007, 85–86
[16] N. P. Erugin, Neyavnye funktsii, Izd-vo Leningr. un-ta, L., 1956 | MR | Zbl
[17] A. N. Sharkovskii, “O tsiklakh i strukture nepreryvnogo otobrazheniya”, Ukr. matem. zhurn., 17:3 (1965), 104–111 | MR
[18] A. N. Sharkovskiǐ, “Attracting and attracted sets”, Soviet Math. Dokl., 6 (1965), 268–270 | MR | Zbl
[19] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960 | MR | MR | Zbl | Zbl
[20] E. V. Blinova, L. S. Efremova, “On $\Omega$-blow-ups in the simplest $C^1$-smooth skew products of interval mappings”, J. Math. Sci., 157:3 (2009), 456–465 | DOI | Zbl
[21] S. F. Kolyada, “On dynamics of triangular maps of the square”, Ergodic Theory Dynam. Systems, 12:4 (1992), 749–768 | DOI | MR | Zbl
[22] Z. Kočan, “The problem of classification of triangular maps with zero topological entropy”, Ann. Math. Sil., 13 (1999), 181–192 | MR | Zbl
[23] F. Balibrea, J. L. Garcia Guirao, J. I. Muñoz Casado, “Description of $\omega$-limit sets of a triangular map on $I^2$”, Far East J. Dyn. Syst., 3:1 (2001), 87–101 | MR | Zbl
[24] F. Balibrea, J. L. Garcia Guirao, J. I. Muñoz Casado, “A triangular map on $I^2$ whose $\omega$-limit sets are all compact intervals of $\{0\}\times I$”, Discrete Contin. Dyn. Syst., 8:4 (2002), 983–994 | DOI | MR | Zbl
[25] F. B. Gallego, J. L. Garcia Guirao, J. I. Muñoz Casado, “On $\omega$-limit sets of triangular maps on the unit cube”, J. Difference Equ. Appl., 9:3–4 (2003), 289–304 | DOI | MR | Zbl
[26] Sh. I. Akhalaya, A. M. Stepin, “Ob invariantnykh merakh neszhimayuschikh otobrazhenii”, Soobsch. AN GSSR, 100:3 (1980), 549–552 | MR | Zbl
[27] Sh. I. Akhalaya, A. M. Stepin, “On absolutely continuous invariant measures of noncontracting transformations of a circle”, Proc. Steklov Inst. Math., 244 (2004), 18–28 | MR | Zbl
[28] V. P. Mikhajlov, Partial differential equations, Mir, Moscow, 1978 | MR | MR | Zbl | Zbl
[29] M. Misiurewicz, “Structure of mappings of an interval with zero entropy”, Inst. Hautes Études Sci. Publ. Math., 53:1 (1981), 5–16 | DOI | MR | Zbl
[30] K. Kuratowski, Topology, v. 1, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl
[31] I. P. Natanson, Theory of functions of a real variable, Ungar Publ., New York, 1955 | MR | MR | Zbl | Zbl
[32] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR
[33] V. A. Zorich, Mathematical analysis, v. I, Universitext, Springer-Verlag, Berlin, 2004 | MR | MR | Zbl | Zbl