Nonnegative solutions of some quasilinear elliptic inequalities and applications
Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 855-871

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f\colon \mathbb R\to\mathbb R$ be a continuous function. It is shown that under certain assumptions on $f$ and $A\colon \mathbb R\to\mathbb R_+$ weak $\mathscr C^1$ solutions of the differential inequality $-\operatorname{div}(A(|\nabla u|)\nabla u)\geqslant f(u)$ on $\mathbb R^N$ are nonnegative. Some extensions of the result in the framework of subelliptic operators on Carnot groups are considered. Bibliography: 19 titles.
Keywords: differential inequalities, $p$-Laplacian, subelliptic operators, Carnot groups.
Mots-clés : nonnegative solutions
@article{SM_2010_201_6_a2,
     author = {L. D'Ambrosio and E. Mitidieri},
     title = {Nonnegative solutions of some quasilinear elliptic inequalities and applications},
     journal = {Sbornik. Mathematics},
     pages = {855--871},
     publisher = {mathdoc},
     volume = {201},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a2/}
}
TY  - JOUR
AU  - L. D'Ambrosio
AU  - E. Mitidieri
TI  - Nonnegative solutions of some quasilinear elliptic inequalities and applications
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 855
EP  - 871
VL  - 201
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_6_a2/
LA  - en
ID  - SM_2010_201_6_a2
ER  - 
%0 Journal Article
%A L. D'Ambrosio
%A E. Mitidieri
%T Nonnegative solutions of some quasilinear elliptic inequalities and applications
%J Sbornik. Mathematics
%D 2010
%P 855-871
%V 201
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_6_a2/
%G en
%F SM_2010_201_6_a2
L. D'Ambrosio; E. Mitidieri. Nonnegative solutions of some quasilinear elliptic inequalities and applications. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 855-871. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a2/