Mots-clés : nonnegative solutions
@article{SM_2010_201_6_a2,
author = {L. D'Ambrosio and E. Mitidieri},
title = {Nonnegative solutions of some quasilinear elliptic inequalities and applications},
journal = {Sbornik. Mathematics},
pages = {855--871},
year = {2010},
volume = {201},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a2/}
}
L. D'Ambrosio; E. Mitidieri. Nonnegative solutions of some quasilinear elliptic inequalities and applications. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 855-871. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a2/
[1] L. D'Ambrosio, E. Mitidieri, S. I. Pohozaev, “Representation formulae and inequalities for solutions of a class of second order partial differential equations”, Trans. Amer. Math. Soc., 358:2 (2006), 893–910 | DOI | MR | Zbl
[2] E. Mitidieri, S. I. Pohozaev, “Positivity Property of Solutions of Some Nonlinear Elliptic Inequalities on $\mathbb R^n$”, Dokl. Math., 68:3 (2003), 339–344 | MR
[3] L. D'Ambrosio, E. Mitidieri, “Positivity property of solutions of some quasilinear elliptic inequalities”, Functional analysis and evolution equations, Birkhäuser, Basel, 2008, 147–155 | DOI | MR | Zbl
[4] P. Pucci, J. Serrin, The maximum principle, Progr. Nonlinear Differential Equations Appl., 73, Birkhäuser, Basel–Boston–Berlin, 2007 | MR | Zbl
[5] E. Mitidieri, S. I. Pokhozhaev, “Some generalizations of the Bernstein theorem”, Differ. Equ., 38:3 (2002), 392–397 | DOI | MR | Zbl
[6] Y. Naito, H. Usami, “Entire solutions of the inequality $\operatorname{div}(A(|Du|)Du)\ge f(u)$”, Math. Z., 225:1 (1997), 167–175 | DOI | MR | Zbl
[7] R. Osserman, “On the inequality $\Delta u\ge f(u)$”, Pacific J. Math., 7:4 (1957), 1641–1647 | MR | Zbl
[8] J. Serrin, “Local behavior of solutions of quasi-linear equations”, Acta Math., 111:1 (1964), 247–302 | DOI | MR | Zbl
[9] E. Bombieri, E. De Giorgi, M. Miranda, “Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche”, Arch. Rational Mech. Anal., 32:4 (1969), 255–267 | DOI | MR | Zbl
[10] E. De Giorgi, “Maggiorazioni a priori relative ad ipersuperfici minimali”, Analisi funzionale (Marzo 1968), Academic Press, 1969, 283–285 | Zbl
[11] W.-M. Ni, J. Serrin, “Nonexistence theorems for quasilinear partial differential equations”, Proceedings of the conference commemorating the 1st centennial of the Circolo Matematico di Palermo (Palermo, 1984), Rend. Circ. Mat. Palermo (2) Suppl., 8, Circolo Matematico di Palermo, Palermo, 1985, 171–185 | MR
[12] W.-M. Ni, J. Serrin, “Existence and non-existence theorems for ground states of quasilinear partial differential equations. The anomalous case”, Acc. Naz. dei Lincei, Atti dei Convegni, 77 (1986), 231–257
[13] L. D'Ambrosio, E. Mitidieri, “A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities”, Adv. Math., 224:3 (2010), 967–1020 | DOI
[14] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monogr. Math., 26, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl
[15] L. Capogna, D. Danielli, N. Garofalo, “An embedding theorem and the Harnack inequality for nonlinear subelliptic equations”, Comm. Partial Differential Equations, 18:9–10 (1993), 1765–1794 | DOI | MR | Zbl
[16] L. Capogna, D. Danielli, N. Garofalo, “Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations”, Amer. J. Math., 118:6 (1996), 1153–1196 | DOI | MR | Zbl
[17] L. D'Ambrosio, “Hardy-type inequalities related to degenerate elliptic differential operators”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4:3 (2005), 451–486 | MR | Zbl
[18] L. D'Ambrosio, “Liouville theorems for anisotropic quasilinear inequalities”, Nonlinear Anal., 70:8 (2009), 2855–2869 | DOI | MR | Zbl
[19] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Math. Notes, 28, Princeton Univ. Press, Princeton, NJ; Tokyo, Univ. of Tokyo Press, 1982 | MR | Zbl