Mots-clés : non-Abelian monopole
@article{SM_2010_201_6_a1,
author = {H. W. Braden and V. Z. Enolski},
title = {$\operatorname{SU}(2)$-monopoles, curves with symmetries and {Ramanujan's} heritage},
journal = {Sbornik. Mathematics},
pages = {801--853},
year = {2010},
volume = {201},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a1/}
}
H. W. Braden; V. Z. Enolski. $\operatorname{SU}(2)$-monopoles, curves with symmetries and Ramanujan's heritage. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 801-853. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a1/
[1] E. J. Weinberg, P. Yi, “Magnetic monopole dynamics, supersymmetry, and duality”, Phys. Rep., 438:2–4 (2007), 65–236 | DOI | MR
[2] N. Manton, P. Sutcliffe, Topological solitons, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, 2004 | MR | Zbl
[3] N. J. Hitchin, “Monopoles and geodesics”, Comm. Math. Phys., 83:4 (1982), 579–602 | DOI | MR | Zbl
[4] N. J. Hitchin, “On the construction of monopoles”, Comm. Math. Phys., 89:2 (1983), 145–190 | DOI | MR | Zbl
[5] W. Nahm, “The construction of all self-dual multimonopoles by the ADHM method”, Monopoles in quantum field theory (Trieste, 1981), World Scientific, Singapore, 1982, 87–94 | MR
[6] N. Ercolani, A. Sinha, “Monopoles and Baker functions”, Comm. Math. Phys., 125:3 (1989), 385–416 | DOI | MR | Zbl
[7] H. W. Braden, V. Z. Enolski, Remarks on the complex geometry of the 3-monopole, arXiv: math-ph/0601040
[8] J. Wellstein, “Zur Theorie der Functionenclasse $s^{3}=(s-\alpha^2)\dotsb(z-\alpha^6)$”, Math. Ann., 52:2–3 (1899), 440–448 | DOI | MR | Zbl
[9] K. Matsumoto, “Theta constants associated with the cyclic triple coverings of the complex projective line branching at six points”, Publ. Res. Inst. Math. Sci., 37:3 (2001), 419–440 | DOI | MR | Zbl
[10] C. J. Houghton, N. S. Manton, N. M. Romão, “On the constraints defining BPS monopoles”, Comm. Math. Phys., 212:1 (2000), 219–243 ; arXiv: hep-th/9909168 | DOI | MR | Zbl
[11] H. W. Braden, V. Z. Enolski, Monopoles, curves and Ramanujan, arXiv: 0704.3939
[12] J. Hurtubise, “$\mathrm{SU}(2)$ monopoles of charge 2”, Comm. Math. Phys., 92:2 (1983), 195–202 | DOI | MR | Zbl
[13] E. Corrigan, P. Goddard, “An $n$-monopole solution with $4n-1$ degrees of freedom”, Comm. Math. Phys., 80:4 (1981), 575–587 | DOI | MR
[14] B. A. Dubrovin, “Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties”, Funct. Anal. Appl., 11:4 (1977), 265–277 | DOI | MR | Zbl | Zbl
[15] E. Picard, “Sur des fonctions de deux variables indépendantes analogues aux fonctions modulaires”, Acta Math., 2:1 (1883), 114–135 | DOI | MR | Zbl
[16] H. Shiga, “On the representation of the Picard modular function by $\theta$ constants. I, II”, Publ. Res. Inst. Math. Sci., 24:3 (1988), 311–360 | DOI | MR | Zbl
[17] G. González Díez, “Loci of curves which are prime Galois coverings of $\mathbb P^1$”, Proc. London Math. Soc. (3), 62:3 (1991), 469–489 | DOI | MR | Zbl
[18] C. L. Tretkoff, M. D. Tretkoff, “Combinatorial group theory, Riemann surfaces and differential equations”, Contributions to group theory, Contemp. Math., 33, Amer. Math. Soc., Providence, RI, 1984, 467–519 | MR | Zbl
[19] H. M. Farkas, I. Kra, Riemann surfaces, Riemann surfaces, 71, Springer-Verlag, New York–Berlin, 1980 | MR | Zbl
[20] B. C. Berndt, S. Bhargava, F. G. Garvan, “Ramanujan's theories of elliptic functions to alternative bases”, Trans. Amer. Math. Soc., 347:11 (1995), 4163–4244 | DOI | MR | Zbl
[21] H. H. Chan, “On Ramanujan's cubic transformation formula for ${}_2F_1(\frac13,\frac23;1;z)$”, Math. Proc. Cambridge Philos. Soc., 124:2 (1998), 193–204 | DOI | MR | Zbl
[22] J. M. Borwein, P. B. Borwein, “Explicit Ramanujan-type approximations to pi of high order”, Proc. Indian Acad. Sci. Math. Sci., 97:1–3 (1987), 53–59 | DOI | MR | Zbl
[23] B. C. Berndt, Ramanujan's notebooks. Part V, Springer-Verlag, New York, 1998 | MR | Zbl
[24] N. J. Hitchin, N. S. Manton, M. K. Murray, “Symmetric monopoles”, Nolinearity, 8:5 (1995), 661–692 | DOI | MR | Zbl
[25] D. F. Lawden, Elliptic functions and applications, Appl. Math. Sci., 80, Springer-Verlag, New York, 1989 | MR | Zbl
[26] E. Goursat, “Sur l'équation differentielle linéaire, qui admet pour intégrale la série hypergéométrique”, Ann. Sci. École Norm. Sup. (2), 10 (1881), 3–142 | MR | Zbl
[27] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl
[28] J. I. Hutchinson, “On a class of automorphic functions”, Trans. Amer. Math. Soc., 3:1 (1902), 1–11 | DOI | MR | Zbl
[29] H. Burkhardt, “Ueber die Darstellung einiger Fälle der automorphen Primformen durch specielle Thetareihen”, Math. Ann., 42:2 (1893), 185–214 | DOI | MR | Zbl
[30] V. Z. Enolski, T. Grava, “Singular $Z_N$-curves and the Riemann–Hilbert problem”, Int. Math. Res. Not., 32 (2004), 1619–1683 ; arXiv: math-ph/0306050 | DOI | MR | Zbl
[31] H. H. Martens, “On the reduction of abelian integrals and a problem of H. Hopf”, Curves, Jacobians, and abelian varieties (Amherst, MA, 1990), Contemp. Math., 136, Amer. Math. Soc., Providence, RI, 1992, 287–296 | MR | Zbl
[32] E. D. Belokolos, V. Z. Enolskii, “Reduction of Abelian functions and algebraically integrable systems. I”, J. Math. Sci. (New York), 106:6 (2001), 3395–3486 | DOI | MR | Zbl
[33] E. D. Belokolos, V. Z. Enolskii, “Reduction of Abelian functions and algebraically integrable systems. II”, J. Math. Sci. (New York), 108:3 (2002), 295–374 | DOI | MR | Zbl
[34] H. H. Martens, “A footnote to the Poincaré complete reducibility theorem”, Publ. Mat., 36:1 (1992), 111–129 | MR | Zbl
[35] J. Igusa, Theta functions, 194, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl
[36] D. Mumford, Tata lectures on theta, v. 1, 2, Progr. Math., 28, 43, Birkhäuser, Boston, 1983, 1984 | MR | MR | Zbl