Refining virtual knot invariants by means of parity
Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 785-800

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work two new invariants of virtual links are constructed: the even Alexander polynomial and the even quandle. The general idea behind the construction is to split the classical crossings into two types, the even and the odd ones, and then define different operations at the crossings of different types. On the other hand, the proposed construction is a realization of the same idea using two closely related languages: the language of quandles and the language of Alexander polynomials. Bibliography: 15 titles.
Keywords: knot, virtual knot, parity, minimality
Mots-clés : Alexander polynomial, quandle.
@article{SM_2010_201_6_a0,
     author = {D. M. Afanas'ev},
     title = {Refining virtual knot invariants by means of parity},
     journal = {Sbornik. Mathematics},
     pages = {785--800},
     publisher = {mathdoc},
     volume = {201},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/}
}
TY  - JOUR
AU  - D. M. Afanas'ev
TI  - Refining virtual knot invariants by means of parity
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 785
EP  - 800
VL  - 201
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/
LA  - en
ID  - SM_2010_201_6_a0
ER  - 
%0 Journal Article
%A D. M. Afanas'ev
%T Refining virtual knot invariants by means of parity
%J Sbornik. Mathematics
%D 2010
%P 785-800
%V 201
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/
%G en
%F SM_2010_201_6_a0
D. M. Afanas'ev. Refining virtual knot invariants by means of parity. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 785-800. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/