Mots-clés : Alexander polynomial, quandle.
@article{SM_2010_201_6_a0,
author = {D. M. Afanas'ev},
title = {Refining virtual knot invariants by means of parity},
journal = {Sbornik. Mathematics},
pages = {785--800},
year = {2010},
volume = {201},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/}
}
D. M. Afanas'ev. Refining virtual knot invariants by means of parity. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 785-800. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/
[1] D. P. Ilytko, V. O. Manturov, “Introduction to graph-link theory”, J. Knot Theory Ramifications, 18:6 (2009), 791–823 | DOI | MR | Zbl
[2] V. O. Manturov, “Chetnost v teorii uzlov”, Matem. sb., 201:5 (2010), 65–110
[3] V. O. Manturov, Knot theory, Chapman Hall, Boca Raton, FL, 2004 | MR | Zbl
[4] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl
[5] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[6] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl
[7] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl
[8] V. O. Manturov, “Long virtual knots and their invariants”, J. Knot Theory Ramifications, 13:8 (2004), 1029–1039 | DOI | MR | Zbl
[9] D. M. Afanasiev, V. O. Manturov, “On virtual crossing number estimates for virtual links”, J. Knot Theory Ramifications, 18:6 (2009), 757–772 | DOI | MR | Zbl
[10] D. M. Afanasiev, V. O. Manturov, “On minimal virtual link diagrams”, Dokl. Math., 79:3 (2009), 301–304 | DOI | MR | Zbl
[11] D. Afanasiev, “On a generalization of the Alexander polynomial for long virtual knots”, J. Knot Theory Ramifications, 18:10 (2009), 1329–1333 | DOI | MR | Zbl
[12] S. V. Matveev, “Distributive groupoids in knot theory”, Math. USSR-Sb., 47:1 (1984), 73–83 | DOI | MR | Zbl
[13] D. Joyce, “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra, 23:1 (1982), 37–65 | DOI | MR | Zbl
[14] L. H. Kauffman, V. O. Manturov, “Virtual biquandles”, Fund. Math., 188 (2005), 103–146 | DOI | MR | Zbl
[15] V. O. Manturov, “On invariants of virtual links”, Acta Appl. Math., 72:3 (2002), 295–309 | DOI | MR | Zbl