Refining virtual knot invariants by means of parity
Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 785-800 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work two new invariants of virtual links are constructed: the even Alexander polynomial and the even quandle. The general idea behind the construction is to split the classical crossings into two types, the even and the odd ones, and then define different operations at the crossings of different types. On the other hand, the proposed construction is a realization of the same idea using two closely related languages: the language of quandles and the language of Alexander polynomials. Bibliography: 15 titles.
Keywords: knot, virtual knot, parity, minimality
Mots-clés : Alexander polynomial, quandle.
@article{SM_2010_201_6_a0,
     author = {D. M. Afanas'ev},
     title = {Refining virtual knot invariants by means of parity},
     journal = {Sbornik. Mathematics},
     pages = {785--800},
     year = {2010},
     volume = {201},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/}
}
TY  - JOUR
AU  - D. M. Afanas'ev
TI  - Refining virtual knot invariants by means of parity
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 785
EP  - 800
VL  - 201
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/
LA  - en
ID  - SM_2010_201_6_a0
ER  - 
%0 Journal Article
%A D. M. Afanas'ev
%T Refining virtual knot invariants by means of parity
%J Sbornik. Mathematics
%D 2010
%P 785-800
%V 201
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/
%G en
%F SM_2010_201_6_a0
D. M. Afanas'ev. Refining virtual knot invariants by means of parity. Sbornik. Mathematics, Tome 201 (2010) no. 6, pp. 785-800. http://geodesic.mathdoc.fr/item/SM_2010_201_6_a0/

[1] D. P. Ilytko, V. O. Manturov, “Introduction to graph-link theory”, J. Knot Theory Ramifications, 18:6 (2009), 791–823 | DOI | MR | Zbl

[2] V. O. Manturov, “Chetnost v teorii uzlov”, Matem. sb., 201:5 (2010), 65–110

[3] V. O. Manturov, Knot theory, Chapman Hall, Boca Raton, FL, 2004 | MR | Zbl

[4] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, CRC, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[5] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[6] A. V. Brailov, A. T. Fomenko, “The topology of integral submanifolds of completely integrable Hamiltonian systems”, Math. USSR-Sb., 62:2 (1989), 373–383 | DOI | MR | Zbl | Zbl

[7] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl

[8] V. O. Manturov, “Long virtual knots and their invariants”, J. Knot Theory Ramifications, 13:8 (2004), 1029–1039 | DOI | MR | Zbl

[9] D. M. Afanasiev, V. O. Manturov, “On virtual crossing number estimates for virtual links”, J. Knot Theory Ramifications, 18:6 (2009), 757–772 | DOI | MR | Zbl

[10] D. M. Afanasiev, V. O. Manturov, “On minimal virtual link diagrams”, Dokl. Math., 79:3 (2009), 301–304 | DOI | MR | Zbl

[11] D. Afanasiev, “On a generalization of the Alexander polynomial for long virtual knots”, J. Knot Theory Ramifications, 18:10 (2009), 1329–1333 | DOI | MR | Zbl

[12] S. V. Matveev, “Distributive groupoids in knot theory”, Math. USSR-Sb., 47:1 (1984), 73–83 | DOI | MR | Zbl

[13] D. Joyce, “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra, 23:1 (1982), 37–65 | DOI | MR | Zbl

[14] L. H. Kauffman, V. O. Manturov, “Virtual biquandles”, Fund. Math., 188 (2005), 103–146 | DOI | MR | Zbl

[15] V. O. Manturov, “On invariants of virtual links”, Acta Appl. Math., 72:3 (2002), 295–309 | DOI | MR | Zbl