Existence of boundary values of polyharmonic functions
Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 735-757 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A necessary and sufficient condition for the existence of a limit in mean square at the boundary is established for a polyharmonic function in a ball. Bibliography: 15 titles.
Keywords: polyharmonic function, boundary value, spherical harmonic, solid spherical harmonic.
@article{SM_2010_201_5_a5,
     author = {V. P. Mikhailov},
     title = {Existence of boundary values of polyharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {735--757},
     year = {2010},
     volume = {201},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a5/}
}
TY  - JOUR
AU  - V. P. Mikhailov
TI  - Existence of boundary values of polyharmonic functions
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 735
EP  - 757
VL  - 201
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_5_a5/
LA  - en
ID  - SM_2010_201_5_a5
ER  - 
%0 Journal Article
%A V. P. Mikhailov
%T Existence of boundary values of polyharmonic functions
%J Sbornik. Mathematics
%D 2010
%P 735-757
%V 201
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2010_201_5_a5/
%G en
%F SM_2010_201_5_a5
V. P. Mikhailov. Existence of boundary values of polyharmonic functions. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 735-757. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a5/

[1] V. P. Mikhailov, “On the existence of boundary limit values for solutions to polyharmonic equations”, Dokl. Math., 73:2 (2006), 261–263 | DOI | MR

[2] V. P. Mikhailov, “Existence of limit values of the solutions of a polyharmonic equation on the boundary of a domain”, Sb. Math., 187:11 (1996), 1665–1690 | DOI | MR | Zbl

[3] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR

[4] V. P. Mikhailov, “Existence of boundary values for metaharmonic functions”, Sb. Math., 190:10 (1999), 1417–1448 | DOI | MR | Zbl

[5] V. P. Mikhailov, “Existence of boundary values for biharmonic functions”, Sb. Math., 195:12 (2004), 1781–1793 | DOI | MR | Zbl

[6] V. P. Mikhailov, “Existence of the boundary value of a polyharmonic function”, Siberian Math. J., 46:5 (2005), 902–912 | DOI | MR | Zbl

[7] V. P. Mikhailov, “A sufficient condition for the existence of limit values of solutions of an elliptic equation on the boundary”, Theoret. and Math. Phys., 157:3 (2008), 1733–1744 | DOI | MR | Zbl

[8] V. P. Mihaǐlov, “On the boundary values of solutions of elliptic equations in domains with a smooth boundary”, Math. USSR-Sb., 30:2 (1976), 143–166 | DOI | MR | Zbl | Zbl

[9] V. P. Mihaǐlov, “On the boundary values of solutions of second-order elliptic equations”, Math. USSR-Sb., 29:1 (1976), 3–11 | DOI | MR | Zbl | Zbl

[10] V. P. Mihaǐlov, “Dirichlet's problem for a second-order elliptic equation”, Differential Equations, 12:10 (1977), 1320–1329 | MR | Zbl

[11] A. K. Guščin, V. P. Mihaǐlov, “On boundary values in $l_p$, $p>1$ of solutions of elliptic equations”, Math. USSR-Sb., 36:1 (1980), 1–19 | DOI | MR | Zbl | Zbl

[12] A. K. Gushchin, V. P. Mikhaǐlov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[13] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Noordhoff, Leiden, 1977 | MR | MR | Zbl

[14] I. N. Vekua, New methods for solving elliptic equations, North-Holland, Amsterdam, 1967 | MR | MR | Zbl

[15] I. P. Natanson, Constructive function theory, v. I–III, Ungar Publ., New York, 1964–1965 | MR | MR | Zbl | Zbl