@article{SM_2010_201_5_a4,
author = {V. O. Manturov},
title = {Parity in knot theory},
journal = {Sbornik. Mathematics},
pages = {693--733},
year = {2010},
volume = {201},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a4/}
}
V. O. Manturov. Parity in knot theory. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 693-733. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a4/
[1] L. H. Kauffman, “Virtual knot theory”, European J. Combin., 20:7 (1999), 663–691 | DOI | MR | Zbl
[2] L. H. Kauffman, “A self-linking invariant of virtual knots”, Fund. Math., 184 (2004), 135–158 | DOI | MR | Zbl
[3] M. Goussarov, M. Polyak, O. Viro, “Finite-type invariants of classical and virtual knots”, Topology, 39:5 (2000), 1045–1068 | DOI | MR | Zbl
[4] D. P. Ilyutko, V. O. Manturov, “Introduction to graph-link theory”, J. Knot Theory Ramifications, 18:6 (2009), 791–823 | DOI | MR | Zbl
[5] D. P. Il'yutko, V. O. Manturov, “Graph-links”, Dokl. Math., 80:2 (2009), 739–742 | DOI | Zbl
[6] L. Traldi, L. Zulli, “A bracket polynomial for graphs, I”, J. Knot Theory Ramifications, 18:12 (2009), 1681–1709, arXiv: 0808.3392 | DOI | MR | Zbl
[7] V. Turaev, “Topology of words”, Proc. Lond. Math. Soc. (3), 95:2 (2007), 360–412 | DOI | MR | Zbl
[8] V. O. Manturov, On free knots, arXiv: 0901.2214
[9] V. O. Manturov, On free knots and links, arXiv: 0902.0127
[10] V. O. Manturov, Free knots are not invertible, arXiv: 0909.2230
[11] A. Gibson, Homotopy invariants of Gauss words, arXiv: 0902.0062
[12] D. P. Il'yutko, V. O. Manturov, “Cobordisms of free knots”, Dokl. Math., 80:3 (2009), 844–846 | DOI | Zbl
[13] V. O. Manturov, Parity and cobordisms of free knots, arXiv: 1001.2827
[14] V. O. Manturov, Free knots and parity, arXiv: math.gt/0912.5348
[15] W. M. Goldman, “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85:2 (1986), 263–302 | DOI | MR | Zbl
[16] V. G. Turaev, “Skein quantization of Poisson algebras of loops on surfaces”, Ann. Sci. École Norm. Sup. (4), 24:6 (1991), 635–704 | MR | Zbl
[17] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 1–35 | MR | Zbl
[18] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[19] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl
[20] A. T. Fomenko, H. Zieschang, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 529–534 | MR | Zbl
[21] S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl
[22] V. O. Manturov, Knot theory, Chapman Hall, Boca Raton, FL, 2004 | MR | Zbl
[23] V. O. Manturov, “A proof of Vassiliev's conjecture on the planarity of singular links”, Izv. Math., 69:5 (2005), 1025–1033 | DOI | MR | Zbl
[24] V. O. Manturov, “Embeddings of 4-valent framed graphs into 2-surfaces”, Dokl. Math., 79:1 (2009), 56–58 | DOI | MR
[25] H. A. Dye, L. H. Kauffman, “Virtual crossing number and the arrow polynomial”, J. Knot Theory Ramifications, 18:10 (2009), 1335–1357 | DOI | MR | Zbl
[26] Y. Miyazawa, “Magnetic graphs and an invariant for virtual links”, J. Knot Theory Ramifications, 15:10 (2006), 1319–1334 | DOI | MR | Zbl
[27] M. O. Bourgoin, “Twisted link theory”, Algebr. Geom. Topol., 8:3 (2008), 1249–1279, arXiv: math/0608233 | DOI | MR | Zbl