Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases
Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 669-691

Voir la notice de l'article provenant de la source Math-Net.Ru

For a locally compact zero-dimensional group $(G,\mathbin{\dot+})$, we build a multiresolution analysis and put forward an algorithm for constructing orthogonal wavelet bases. A special case is indicated when a wavelet basis is generated from a single function through contractions, translations and exponentiations. Bibliography: 19 titles.
Keywords: zero-dimensional groups, multiresolution analysis, wavelet bases.
@article{SM_2010_201_5_a3,
     author = {S. F. Lukomskii},
     title = {Multiresolution analysis on zero-dimensional {Abelian} groups and wavelets bases},
     journal = {Sbornik. Mathematics},
     pages = {669--691},
     publisher = {mathdoc},
     volume = {201},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/}
}
TY  - JOUR
AU  - S. F. Lukomskii
TI  - Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 669
EP  - 691
VL  - 201
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/
LA  - en
ID  - SM_2010_201_5_a3
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%T Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases
%J Sbornik. Mathematics
%D 2010
%P 669-691
%V 201
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/
%G en
%F SM_2010_201_5_a3
S. F. Lukomskii. Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 669-691. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/