@article{SM_2010_201_5_a3,
author = {S. F. Lukomskii},
title = {Multiresolution analysis on zero-dimensional {Abelian} groups and wavelets bases},
journal = {Sbornik. Mathematics},
pages = {669--691},
year = {2010},
volume = {201},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/}
}
S. F. Lukomskii. Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 669-691. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/
[1] W. Ch. Lang, “Orthogonal wavelets on the Cantor dyadic group”, SIAM J. Math. Anal., 27:1 (1996), 305–312 | DOI | MR | Zbl
[2] W. Ch. Lang, “Wavelet analysis on the Cantor dyadic group”, Housten J. Math., 24:3 (1998), 533–544 | MR | Zbl
[3] W. Ch. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Internat. J. Math. Math. Sci., 21:2 (1998), 307–314 | DOI | MR | Zbl
[4] V. Yu. Protasov, Yu. A. Farkov, “Dyadic wavelets and refinable functions on a half-line”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | MR | Zbl
[5] Yu. A. Farkov, “Biorthogonal dyadic wavelets on $ \mathbb R_+$”, Russian Math. Surveys, 62:6 (2007), 1197–1198 | DOI | MR | Zbl
[6] V. Yu. Protasov, “Approximation by dyadic wavelets”, Sb. Math., 198:11 (2007), 1665–1681 | DOI | MR | Zbl
[7] Yu. A. Farkov, “Orthogonal wavelets with compact support on locally compact Abelian groups”, Izv. Math., 69:3 (2005), 623–650 | DOI | MR | Zbl
[8] Yu. A. Farkov, “Orthogonal wavelets with compact support on locally compact Abelian groups”, Math. Notes, 82:5–6 (2007), 843–859 | DOI | MR | Zbl
[9] S. V. Kozyrev, “Wavelet theory as $p$-adic spectral analysis”, Izv. Math., 66:2 (2002), 367–376 | DOI | MR | Zbl
[10] S. V. Kozyrev, “$p$-adic pseudodifferential operators and $p$-adic wavelets”, Theoret. and Math. Phys., 138:3 (2004), 322–332 | DOI | MR | Zbl
[11] A. Yu. Khrennikov, V. M. Shelkovich, $p$-adic multidimensional wavelets and their application to $p$-adic pseudo-differential operators, arXiv: math-ph/0612049
[12] V. M. Shelkovich, M. Skopina, $p$-adic Haar multiresolution analysis and pseudo-differential operators, arXiv: 0705.2294
[13] A. Yu. Khrennikov, V. M. Shelkovich, M. Skopina, $p$-Adic refinable functions and MRA-based wavelets, arXiv: 0711.2820
[14] S. Albeverio, S. Evdokimov, M. Skopina, “$p$-adic nonorthogonal wavelet bases”, Proc. Steklov Inst. Math., 265:1 (2009), 1–12 | DOI | Zbl
[15] J. J. Benedetto, R. L. Benedetto, “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | MR | Zbl
[16] S. F. Lukomskii, “O ryadakh Khaara na kompaktnoi nulmernoi gruppe”, Izv. Saratovskogo un-ta. Ser. Matem. Mekh. Inform., 9:1 (2009), 14–19
[17] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR | Zbl
[18] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979 | MR | MR | Zbl | Zbl
[19] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005