Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases
Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 669-691 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a locally compact zero-dimensional group $(G,\mathbin{\dot+})$, we build a multiresolution analysis and put forward an algorithm for constructing orthogonal wavelet bases. A special case is indicated when a wavelet basis is generated from a single function through contractions, translations and exponentiations. Bibliography: 19 titles.
Keywords: zero-dimensional groups, multiresolution analysis, wavelet bases.
@article{SM_2010_201_5_a3,
     author = {S. F. Lukomskii},
     title = {Multiresolution analysis on zero-dimensional {Abelian} groups and wavelets bases},
     journal = {Sbornik. Mathematics},
     pages = {669--691},
     year = {2010},
     volume = {201},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/}
}
TY  - JOUR
AU  - S. F. Lukomskii
TI  - Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 669
EP  - 691
VL  - 201
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/
LA  - en
ID  - SM_2010_201_5_a3
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%T Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases
%J Sbornik. Mathematics
%D 2010
%P 669-691
%V 201
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/
%G en
%F SM_2010_201_5_a3
S. F. Lukomskii. Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 669-691. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/

[1] W. Ch. Lang, “Orthogonal wavelets on the Cantor dyadic group”, SIAM J. Math. Anal., 27:1 (1996), 305–312 | DOI | MR | Zbl

[2] W. Ch. Lang, “Wavelet analysis on the Cantor dyadic group”, Housten J. Math., 24:3 (1998), 533–544 | MR | Zbl

[3] W. Ch. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Internat. J. Math. Math. Sci., 21:2 (1998), 307–314 | DOI | MR | Zbl

[4] V. Yu. Protasov, Yu. A. Farkov, “Dyadic wavelets and refinable functions on a half-line”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | MR | Zbl

[5] Yu. A. Farkov, “Biorthogonal dyadic wavelets on $ \mathbb R_+$”, Russian Math. Surveys, 62:6 (2007), 1197–1198 | DOI | MR | Zbl

[6] V. Yu. Protasov, “Approximation by dyadic wavelets”, Sb. Math., 198:11 (2007), 1665–1681 | DOI | MR | Zbl

[7] Yu. A. Farkov, “Orthogonal wavelets with compact support on locally compact Abelian groups”, Izv. Math., 69:3 (2005), 623–650 | DOI | MR | Zbl

[8] Yu. A. Farkov, “Orthogonal wavelets with compact support on locally compact Abelian groups”, Math. Notes, 82:5–6 (2007), 843–859 | DOI | MR | Zbl

[9] S. V. Kozyrev, “Wavelet theory as $p$-adic spectral analysis”, Izv. Math., 66:2 (2002), 367–376 | DOI | MR | Zbl

[10] S. V. Kozyrev, “$p$-adic pseudodifferential operators and $p$-adic wavelets”, Theoret. and Math. Phys., 138:3 (2004), 322–332 | DOI | MR | Zbl

[11] A. Yu. Khrennikov, V. M. Shelkovich, $p$-adic multidimensional wavelets and their application to $p$-adic pseudo-differential operators, arXiv: math-ph/0612049

[12] V. M. Shelkovich, M. Skopina, $p$-adic Haar multiresolution analysis and pseudo-differential operators, arXiv: 0705.2294

[13] A. Yu. Khrennikov, V. M. Shelkovich, M. Skopina, $p$-Adic refinable functions and MRA-based wavelets, arXiv: 0711.2820

[14] S. Albeverio, S. Evdokimov, M. Skopina, “$p$-adic nonorthogonal wavelet bases”, Proc. Steklov Inst. Math., 265:1 (2009), 1–12 | DOI | Zbl

[15] J. J. Benedetto, R. L. Benedetto, “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | MR | Zbl

[16] S. F. Lukomskii, “O ryadakh Khaara na kompaktnoi nulmernoi gruppe”, Izv. Saratovskogo un-ta. Ser. Matem. Mekh. Inform., 9:1 (2009), 14–19

[17] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR | Zbl

[18] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979 | MR | MR | Zbl | Zbl

[19] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005