Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases
Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 669-691
Voir la notice de l'article provenant de la source Math-Net.Ru
For a locally compact zero-dimensional group $(G,\mathbin{\dot+})$, we build a multiresolution analysis and put forward an algorithm for constructing orthogonal wavelet bases. A special case is indicated when a wavelet basis is generated from a single function through contractions, translations and exponentiations.
Bibliography: 19 titles.
Keywords:
zero-dimensional groups, multiresolution analysis, wavelet bases.
@article{SM_2010_201_5_a3,
author = {S. F. Lukomskii},
title = {Multiresolution analysis on zero-dimensional {Abelian} groups and wavelets bases},
journal = {Sbornik. Mathematics},
pages = {669--691},
publisher = {mathdoc},
volume = {201},
number = {5},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/}
}
S. F. Lukomskii. Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 669-691. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a3/