Finite simply reducible groups are soluble
Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 655-668

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ is called simply reducible (briefly, an $SR$-group) if it has the following two properties: every element of this group is conjugate to its inverse; the tensor product of any two irreducible representations decomposes into a sum of irreducible representations of the group $G$ with multiplicities not exceeding 1. It is proved that finite $SR$-groups are soluble. Bibliography: 13 titles.
Keywords: finite groups, characters, multiplicity-free representations, simply reducible groups.
@article{SM_2010_201_5_a2,
     author = {L. S. Kazarin and E. I. Chankov},
     title = {Finite simply reducible groups are soluble},
     journal = {Sbornik. Mathematics},
     pages = {655--668},
     publisher = {mathdoc},
     volume = {201},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a2/}
}
TY  - JOUR
AU  - L. S. Kazarin
AU  - E. I. Chankov
TI  - Finite simply reducible groups are soluble
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 655
EP  - 668
VL  - 201
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_5_a2/
LA  - en
ID  - SM_2010_201_5_a2
ER  - 
%0 Journal Article
%A L. S. Kazarin
%A E. I. Chankov
%T Finite simply reducible groups are soluble
%J Sbornik. Mathematics
%D 2010
%P 655-668
%V 201
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_5_a2/
%G en
%F SM_2010_201_5_a2
L. S. Kazarin; E. I. Chankov. Finite simply reducible groups are soluble. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 655-668. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a2/