Finite simply reducible groups are soluble
Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 655-668 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A finite group $G$ is called simply reducible (briefly, an $SR$-group) if it has the following two properties: every element of this group is conjugate to its inverse; the tensor product of any two irreducible representations decomposes into a sum of irreducible representations of the group $G$ with multiplicities not exceeding 1. It is proved that finite $SR$-groups are soluble. Bibliography: 13 titles.
Keywords: finite groups, characters, multiplicity-free representations, simply reducible groups.
@article{SM_2010_201_5_a2,
     author = {L. S. Kazarin and E. I. Chankov},
     title = {Finite simply reducible groups are soluble},
     journal = {Sbornik. Mathematics},
     pages = {655--668},
     year = {2010},
     volume = {201},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a2/}
}
TY  - JOUR
AU  - L. S. Kazarin
AU  - E. I. Chankov
TI  - Finite simply reducible groups are soluble
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 655
EP  - 668
VL  - 201
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_5_a2/
LA  - en
ID  - SM_2010_201_5_a2
ER  - 
%0 Journal Article
%A L. S. Kazarin
%A E. I. Chankov
%T Finite simply reducible groups are soluble
%J Sbornik. Mathematics
%D 2010
%P 655-668
%V 201
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2010_201_5_a2/
%G en
%F SM_2010_201_5_a2
L. S. Kazarin; E. I. Chankov. Finite simply reducible groups are soluble. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 655-668. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a2/

[1] E. P. Wigner, “On representations of certain finite groups”, Amer. J. Math., 63:1 (1941), 57–63 | DOI | MR | Zbl

[2] M. Hamermesh, Group theory and its application to physical problems, Addison-Wesley, Reading, MA–London, 1962 | MR | Zbl | Zbl

[3] G. W. Mackey, “Multiplicity free representations of finite groups”, Pacific. J. Math., 8 (1958), 503–510 | MR | Zbl

[4] A. I. Kostrikin, Vvedenie v algebru. Chast III. Osnovnye struktury algebry, Fizmatlit, M., 2000 | Zbl

[5] V. D. Mazurov, Yu. I. Merzlyakov, V. A. Churkin (eds.), The Kourovka notebook. Unsolved problems in group theory, ed. 16, Institute of Math., Novosibirsk, 2006 | MR | Zbl

[6] L. S. Kazarin, V. V. Yanishevskiǐ, “On finite simply reducible groups”, St. Petersburg Math. J., 19:6 (2008), 931–951 | DOI | MR

[7] V. A. Belonogov, Predstavleniya i kharaktery v teorii konechnykh grupp, Akad. nauk SSSR. Uralskoe otdelenie, Sverdlovsk, 1990 | MR | Zbl

[8] I. M. Isaacs, Character theory of finite groups, Academic Press, New York–San Francisco–London, 1976 | MR | Zbl

[9] Á. Seress, “The minimal base size of primitive solvable permutation groups”, J. London Math. Soc. (2), 53:2 (1996), 243–255 | MR | Zbl

[10] S. Dolfi, “Orbits of permutation groups on the power set”, Arch. Math. (Basel), 75:5 (2000), 321–327 | DOI | MR | Zbl

[11] P. X. Gallagher, “The number of conjugacy classes in a finite group”, Math. Z., 118:3 (1970), 175–179 | DOI | MR | Zbl

[12] L. G. Kovács, G. R. Robinson, “On the number of conjugacy classes of a finite group”, J. Algebra, 160:2 (1993), 441–460 | DOI | MR | Zbl

[13] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Oxford Univ. Press, Eynsham, 1985 | MR | Zbl