@article{SM_2010_201_5_a0,
author = {A. V. Aminova and N. A.-M. Aminov},
title = {The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems},
journal = {Sbornik. Mathematics},
pages = {631--643},
year = {2010},
volume = {201},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a0/}
}
TY - JOUR AU - A. V. Aminova AU - N. A.-M. Aminov TI - The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems JO - Sbornik. Mathematics PY - 2010 SP - 631 EP - 643 VL - 201 IS - 5 UR - http://geodesic.mathdoc.fr/item/SM_2010_201_5_a0/ LA - en ID - SM_2010_201_5_a0 ER -
%0 Journal Article %A A. V. Aminova %A N. A.-M. Aminov %T The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems %J Sbornik. Mathematics %D 2010 %P 631-643 %V 201 %N 5 %U http://geodesic.mathdoc.fr/item/SM_2010_201_5_a0/ %G en %F SM_2010_201_5_a0
A. V. Aminova; N. A.-M. Aminov. The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 631-643. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a0/
[1] S. Li, “Klassifikation und Integration von gewonlichen Differential gleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten. III”, Archiv for Matematik og Naturvidenskab, 8:4 (1883), 371–458
[2] G. Birkhoff, Hydrodynamics, a study in logic, fact, and similitude, Princeton Univ. Press, Princeton, NJ, 1950 | MR | Zbl | Zbl
[3] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982 | MR | MR | Zbl | Zbl
[4] N. Kh. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), Reidel Publ., Dordrecht–Boston–Lancaster, 1985 | MR | MR | Zbl | Zbl
[5] N. H. Ibragimov, “Equivalence groups and invariants of linear and non-linear equations”, Archives of ALGA, 1, Blekinge Institute of Technology, Karlskrona, 2004, 9–70
[6] N. H. Ibragimov, A practical course in differential equations and mathematical modelling. Classical and new methods. Nonlinear mathematical models. Symmetry and invariance principles, Blekinge Institute of Technology, Karlskrona, 2006 | Zbl
[7] I. S. Krasil'shchik, V. V. Lychagin, A. M. Vinogradov, Geometry of jet spaces and nonlinear partial differential equations, Adv. Stud. Contemp. Math., 1, Gordon and Breach, New York, 1986 | MR | MR | Zbl | Zbl
[8] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl | Zbl
[9] A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465 | DOI | MR | Zbl
[10] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems. IV. Symplectic geometry and its applications, Encyclopaedia Math. Sci., 4, Springer-Verlag, Berlin, 1990, 173–280 | MR | MR | Zbl | Zbl
[11] V. S. Dryuma, Geometricheskaya teoriya nelineinykh dinamicheskikh sistem, preprint, In-t matem. s VTs AN Moldavskoi SSR, Kishinev, 1986
[12] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986 | MR | MR | Zbl | Zbl
[13] G. W. Bluman, S. Kumei, Symmetries and differential equations, Appl. Math. Sci., 81, Springer-Verlag, New York, 1989 | MR | Zbl
[14] B. J. Cantwell, Introduction to symmetry analysis, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[15] A. V. Aminova, Proektivnye preobrazovaniya kak simmetrii differentsialnykh uravnenii, preprint, Izd-vo Kazansk. un-ta, Kazan, 1991, dep. v VINITI 1706-V91
[16] A. V. Aminova, “Pseudo-Riemannian manifolds with common geodesies”, Russian Math. Surveys, 48:2 (1993), 105–160 | DOI | MR | Zbl
[17] A. V. Aminova, “Automorphisms of geometric structures as symmetries of differential equations”, Russian Math. (Iz. VUZ), 38:2 (1994), 1–8 | MR | Zbl
[18] A. V. Aminova, “Lie algebras of infinitesimal projective transformations of Lorentz manifolds”, Russian Math. Surveys, 50:1 (1995), 69–143 | DOI | MR | Zbl
[19] A. V. Aminova, “Projective transformations and symmetries of differential equation”, Sb. Math., 186:12 (1995), 1711–1726 | DOI | MR | Zbl
[20] A. V. Aminova, N. A.-M. Aminov, “Projective geometry of systems of differential equations: general conceptions”, Tensor (N.S.), 62:1 (2000), 65–86 | MR | Zbl
[21] A. V. Aminova, Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003
[22] A. V. Aminova, N. A.-M. Aminov, “Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the Abelian subgroup $G_3$”, Russian Math. (Iz. VUZ), 49:6 (2005), 10–24 | MR | Zbl
[23] A. V. Aminova, N. A. Aminov, “Projective geometry of systems of second-order differential equations”, Sb. Math., 197:7 (2006), 951–975 | DOI | MR | Zbl
[24] A. V. Aminova, N. A.-M. Aminov, “Geometric theory of differential systems: Linearization criterion for systems of second-order ordinary differential equations with a 4-dimensional solvable symmetry group of the Lie–Petrov type $VI_1$”, J. Math. Sci., 158:2 (2009), 163–183 | DOI | Zbl
[25] A. V. Aminova, N. A.-M. Aminov, “Prostranstva s proektivnoi svyaznostyu Kartana i gruppovoi analiz sistem obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Ser. Sovrem. mat. i ee pril. Temat. obz., 123, VINITI, M., 2009, 58–80
[26] E. Cartan, “Sur les variété à connexion projective”, Bull. Soc. Math. France, 52 (1924), 205–241 | MR | MR | Zbl
[27] T. Y. Thomas, “On the projective and equi-projective geometries of paths”, Proc. Nat. Acad. Sci. U.S.A., 11:4 (1925), 199–203 | DOI | Zbl
[28] V. Arnol'd, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, Moscow, 1980 | MR | MR | Zbl | Zbl
[29] A. Tresse, “Sur les invariants différentiels des groupes continus de transformations”, Acta Math., 18:1 (1894), 1–88 | DOI | MR | Zbl
[30] A. Tresse, Détermination des invariants ponctuels de l'équation différentielle ordinaire du second ordre $y''=\omega (x,y,y')$, Hirkey, Leiptzig, 1896 | Zbl
[31] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957 | MR | Zbl
[32] Sh. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl
[33] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22, Amer. Math. Soc., Providence, RI, 1957 | MR | Zbl
[34] L. S. Pontryagin, Topological groups, Gordon and Breach, New York–London–Paris, 1966 | MR | MR | Zbl | Zbl