The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems
Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 631-643 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the projective geometric theory of systems of differential equations, which is being developed by the authors, conditions which ensure that a family of graphs of solutions of a system of $m$ second-order ordinary differential equations $\ddot{\vec y}=\vec f(t,\vec y,\dot{\vec y})$ with $m$ unknown functions $y^1(t),\dots,y^m(t)$ can be straightened (that is, transformed into a family of straight lines) by means of a local diffeomorphism of the variables of the system which takes it to the form $\vec z{\,}''=0$ (straightens the system) are investigated. It is shown that the system to be straightened must be cubic with respect to the derivatives of the unknown functions. Necessary and sufficient conditions for straightening the system are found, which have the form of differential equations for the coefficients of the system or are stated in terms of symmetries of the system. For $m=1$ the system consists of a single equation $\ddot y=\vec f(t,y,\dot y)$, and the tests obtained reduce to the conditions for straightening this equations which were derived by Lie in 1883. Bibliography: 34 titles.
Keywords: projective geometric theory of systems of second-order ordinary differential equations, associated projective connection, straightening theorems, symmetry group.
@article{SM_2010_201_5_a0,
     author = {A. V. Aminova and N. A.-M. Aminov},
     title = {The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems},
     journal = {Sbornik. Mathematics},
     pages = {631--643},
     year = {2010},
     volume = {201},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_5_a0/}
}
TY  - JOUR
AU  - A. V. Aminova
AU  - N. A.-M. Aminov
TI  - The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 631
EP  - 643
VL  - 201
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_5_a0/
LA  - en
ID  - SM_2010_201_5_a0
ER  - 
%0 Journal Article
%A A. V. Aminova
%A N. A.-M. Aminov
%T The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems
%J Sbornik. Mathematics
%D 2010
%P 631-643
%V 201
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2010_201_5_a0/
%G en
%F SM_2010_201_5_a0
A. V. Aminova; N. A.-M. Aminov. The projective geometric theory of systems of second-order differential equations: straightening and symmetry theorems. Sbornik. Mathematics, Tome 201 (2010) no. 5, pp. 631-643. http://geodesic.mathdoc.fr/item/SM_2010_201_5_a0/

[1] S. Li, “Klassifikation und Integration von gewonlichen Differential gleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten. III”, Archiv for Matematik og Naturvidenskab, 8:4 (1883), 371–458

[2] G. Birkhoff, Hydrodynamics, a study in logic, fact, and similitude, Princeton Univ. Press, Princeton, NJ, 1950 | MR | Zbl | Zbl

[3] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982 | MR | MR | Zbl | Zbl

[4] N. Kh. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), Reidel Publ., Dordrecht–Boston–Lancaster, 1985 | MR | MR | Zbl | Zbl

[5] N. H. Ibragimov, “Equivalence groups and invariants of linear and non-linear equations”, Archives of ALGA, 1, Blekinge Institute of Technology, Karlskrona, 2004, 9–70

[6] N. H. Ibragimov, A practical course in differential equations and mathematical modelling. Classical and new methods. Nonlinear mathematical models. Symmetry and invariance principles, Blekinge Institute of Technology, Karlskrona, 2006 | Zbl

[7] I. S. Krasil'shchik, V. V. Lychagin, A. M. Vinogradov, Geometry of jet spaces and nonlinear partial differential equations, Adv. Stud. Contemp. Math., 1, Gordon and Breach, New York, 1986 | MR | MR | Zbl | Zbl

[8] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl | Zbl

[9] A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465 | DOI | MR | Zbl

[10] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems. IV. Symplectic geometry and its applications, Encyclopaedia Math. Sci., 4, Springer-Verlag, Berlin, 1990, 173–280 | MR | MR | Zbl | Zbl

[11] V. S. Dryuma, Geometricheskaya teoriya nelineinykh dinamicheskikh sistem, preprint, In-t matem. s VTs AN Moldavskoi SSR, Kishinev, 1986

[12] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986 | MR | MR | Zbl | Zbl

[13] G. W. Bluman, S. Kumei, Symmetries and differential equations, Appl. Math. Sci., 81, Springer-Verlag, New York, 1989 | MR | Zbl

[14] B. J. Cantwell, Introduction to symmetry analysis, Cambridge Texts Appl. Math., Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[15] A. V. Aminova, Proektivnye preobrazovaniya kak simmetrii differentsialnykh uravnenii, preprint, Izd-vo Kazansk. un-ta, Kazan, 1991, dep. v VINITI 1706-V91

[16] A. V. Aminova, “Pseudo-Riemannian manifolds with common geodesies”, Russian Math. Surveys, 48:2 (1993), 105–160 | DOI | MR | Zbl

[17] A. V. Aminova, “Automorphisms of geometric structures as symmetries of differential equations”, Russian Math. (Iz. VUZ), 38:2 (1994), 1–8 | MR | Zbl

[18] A. V. Aminova, “Lie algebras of infinitesimal projective transformations of Lorentz manifolds”, Russian Math. Surveys, 50:1 (1995), 69–143 | DOI | MR | Zbl

[19] A. V. Aminova, “Projective transformations and symmetries of differential equation”, Sb. Math., 186:12 (1995), 1711–1726 | DOI | MR | Zbl

[20] A. V. Aminova, N. A.-M. Aminov, “Projective geometry of systems of differential equations: general conceptions”, Tensor (N.S.), 62:1 (2000), 65–86 | MR | Zbl

[21] A. V. Aminova, Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003

[22] A. V. Aminova, N. A.-M. Aminov, “Fourth-order differential systems with a four-dimensional solvable symmetry group that does not contain the Abelian subgroup $G_3$”, Russian Math. (Iz. VUZ), 49:6 (2005), 10–24 | MR | Zbl

[23] A. V. Aminova, N. A. Aminov, “Projective geometry of systems of second-order differential equations”, Sb. Math., 197:7 (2006), 951–975 | DOI | MR | Zbl

[24] A. V. Aminova, N. A.-M. Aminov, “Geometric theory of differential systems: Linearization criterion for systems of second-order ordinary differential equations with a 4-dimensional solvable symmetry group of the Lie–Petrov type $VI_1$”, J. Math. Sci., 158:2 (2009), 163–183 | DOI | Zbl

[25] A. V. Aminova, N. A.-M. Aminov, “Prostranstva s proektivnoi svyaznostyu Kartana i gruppovoi analiz sistem obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Ser. Sovrem. mat. i ee pril. Temat. obz., 123, VINITI, M., 2009, 58–80

[26] E. Cartan, “Sur les variété à connexion projective”, Bull. Soc. Math. France, 52 (1924), 205–241 | MR | MR | Zbl

[27] T. Y. Thomas, “On the projective and equi-projective geometries of paths”, Proc. Nat. Acad. Sci. U.S.A., 11:4 (1925), 199–203 | DOI | Zbl

[28] V. Arnol'd, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, Moscow, 1980 | MR | MR | Zbl | Zbl

[29] A. Tresse, “Sur les invariants différentiels des groupes continus de transformations”, Acta Math., 18:1 (1894), 1–88 | DOI | MR | Zbl

[30] A. Tresse, Détermination des invariants ponctuels de l'équation différentielle ordinaire du second ordre $y''=\omega (x,y,y')$, Hirkey, Leiptzig, 1896 | Zbl

[31] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957 | MR | Zbl

[32] Sh. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | MR | Zbl | Zbl

[33] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22, Amer. Math. Soc., Providence, RI, 1957 | MR | Zbl

[34] L. S. Pontryagin, Topological groups, Gordon and Breach, New York–London–Paris, 1966 | MR | MR | Zbl | Zbl