A~nonlinear integral equation of Hammerstein type with a~noncompact operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 595-606
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a homogeneous nonlinear integral equation of Hammerstein type which has an important application in the kinetic theory of gases. We prove a positive solution of this equation exists and describe its
asymptotic behaviour at infinity.
Bibliography: 6 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integral equation of Hammerstein type, factorization of integral operators, convergence of iterations, pointwise limit, asymptotic behaviour of a solution.
                    
                    
                    
                  
                
                
                @article{SM_2010_201_4_a4,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {A~nonlinear integral equation of {Hammerstein} type with a~noncompact operator},
     journal = {Sbornik. Mathematics},
     pages = {595--606},
     publisher = {mathdoc},
     volume = {201},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a4/}
}
                      
                      
                    TY - JOUR AU - A. Kh. Khachatryan AU - Kh. A. Khachatryan TI - A~nonlinear integral equation of Hammerstein type with a~noncompact operator JO - Sbornik. Mathematics PY - 2010 SP - 595 EP - 606 VL - 201 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2010_201_4_a4/ LA - en ID - SM_2010_201_4_a4 ER -
A. Kh. Khachatryan; Kh. A. Khachatryan. A~nonlinear integral equation of Hammerstein type with a~noncompact operator. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 595-606. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a4/
