A nonlinear integral equation of Hammerstein type with a noncompact operator
Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 595-606
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a homogeneous nonlinear integral equation of Hammerstein type which has an important application in the kinetic theory of gases. We prove a positive solution of this equation exists and describe its asymptotic behaviour at infinity. Bibliography: 6 titles.
Keywords:
integral equation of Hammerstein type, factorization of integral operators, convergence of iterations, pointwise limit, asymptotic behaviour of a solution.
@article{SM_2010_201_4_a4,
author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
title = {A~nonlinear integral equation of {Hammerstein} type with a~noncompact operator},
journal = {Sbornik. Mathematics},
pages = {595--606},
year = {2010},
volume = {201},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a4/}
}
A. Kh. Khachatryan; Kh. A. Khachatryan. A nonlinear integral equation of Hammerstein type with a noncompact operator. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 595-606. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a4/
[1] C. Cercignani, Theory and application of the Boltzmann equation, Elsevier, New York, 1975 | MR | MR | Zbl
[2] M. N. Kogan, Dinamika razrezhennogo gaza, Nauka, M., 1967 | Zbl
[3] N. B. Engibaryan, A. Kh. Khachatryan, “Voprosy nelineinoi teorii dinamiki razrezhennogo gaza”, Matem. modelirovanie, 16:1 (2004), 67–74 | MR | Zbl
[4] Kh. A. Khachatryan, “Solvability of a conservative integral equation on the half-line”, J. Contemp. Math. Anal., 37:4 (2002), 30–37 | MR | Zbl
[5] L. G. Arabajian, “Solutions of certain integral equations of Hammerstein type”, J. Contemp. Math. Anal., 32:1 (1997), 17–24 | MR | Zbl
[6] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl