Framed Morse functions on surfaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 501-567
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $M$ be a smooth, compact, not necessarily orientable surface with (maybe empty) boundary, and let $F$ be the space of Morse functions on $M$ that are constant on each component of the boundary and have no critical points at the boundary. The notion of framing is defined for a Morse function $f\in F$. In the case of an orientable surface $M$ this is a closed 1-form $\alpha$ on $M$ with punctures at the critical points of local minimum and maximum of $f$ such that in a neighbourhood of each critical point the pair $(f,\alpha)$ has a canonical form in a suitable local coordinate chart  and the 2-form $df\wedge\alpha$ does not vanish on $M$ punctured at the critical points and defines there a positive orientation. Each Morse function on $M$ is shown to have a framing, and the space $F$ endowed with the $C^\infty$-topology is homotopy equivalent
to the space $\mathbb F$ of framed Morse functions. The results obtained make it possible to reduce the problem of describing the homotopy type of $F$ to the simpler problem of finding the homotopy type of $\mathbb F$. As a solution of the latter, an analogue of the parametric $h$-principle is stated for the space $\mathbb F$.
Bibliography: 41 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Morse functions, framed Morse functions, equivalence of functions, compact surface, $C^\infty$-topology.
                    
                    
                    
                  
                
                
                @article{SM_2010_201_4_a2,
     author = {E. A. Kudryavtseva and D. A. Permyakov},
     title = {Framed {Morse} functions on surfaces},
     journal = {Sbornik. Mathematics},
     pages = {501--567},
     publisher = {mathdoc},
     volume = {201},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/}
}
                      
                      
                    E. A. Kudryavtseva; D. A. Permyakov. Framed Morse functions on surfaces. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 501-567. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/
