Framed Morse functions on surfaces
Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 501-567 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M$ be a smooth, compact, not necessarily orientable surface with (maybe empty) boundary, and let $F$ be the space of Morse functions on $M$ that are constant on each component of the boundary and have no critical points at the boundary. The notion of framing is defined for a Morse function $f\in F$. In the case of an orientable surface $M$ this is a closed 1-form $\alpha$ on $M$ with punctures at the critical points of local minimum and maximum of $f$ such that in a neighbourhood of each critical point the pair $(f,\alpha)$ has a canonical form in a suitable local coordinate chart and the 2-form $df\wedge\alpha$ does not vanish on $M$ punctured at the critical points and defines there a positive orientation. Each Morse function on $M$ is shown to have a framing, and the space $F$ endowed with the $C^\infty$-topology is homotopy equivalent to the space $\mathbb F$ of framed Morse functions. The results obtained make it possible to reduce the problem of describing the homotopy type of $F$ to the simpler problem of finding the homotopy type of $\mathbb F$. As a solution of the latter, an analogue of the parametric $h$-principle is stated for the space $\mathbb F$. Bibliography: 41 titles.
Keywords: Morse functions, framed Morse functions, equivalence of functions, compact surface, $C^\infty$-topology.
@article{SM_2010_201_4_a2,
     author = {E. A. Kudryavtseva and D. A. Permyakov},
     title = {Framed {Morse} functions on surfaces},
     journal = {Sbornik. Mathematics},
     pages = {501--567},
     year = {2010},
     volume = {201},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - D. A. Permyakov
TI  - Framed Morse functions on surfaces
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 501
EP  - 567
VL  - 201
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/
LA  - en
ID  - SM_2010_201_4_a2
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A D. A. Permyakov
%T Framed Morse functions on surfaces
%J Sbornik. Mathematics
%D 2010
%P 501-567
%V 201
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/
%G en
%F SM_2010_201_4_a2
E. A. Kudryavtseva; D. A. Permyakov. Framed Morse functions on surfaces. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 501-567. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/

[1] M. Gromov, Partial differential relations, Ergeb. Math. Grenzgeb. (3), 9, Springer-Verlag, Berlin, 1986 | MR | MR | Zbl

[2] K. Igusa, “Higher singularities of smooth functions are unnecessary”, Ann. of Math. (2), 119:1 (1984), 1–58 | DOI | MR | Zbl

[3] V. A. Vasil'ev, “Topology of spaces of functions without compound singularities”, Funct. Anal. Appl., 23:4 (1989), 277–286 | DOI | MR | Zbl

[4] V. I. Arnol'd, “Spaces of functions with moderate singularities”, Funct. Anal. Appl., 23:3 (1989), 169–177 | DOI | MR | Zbl

[5] Yu. Burman, “Morse theory for functions of two variables without critical points”, Funct. Differ. Equ., 3:1–2 (1995), 31–43 | MR | Zbl

[6] Yu. M. Burman, “Triangulations of surfaces with boundary and the homotopy principle for functions without critical points”, Ann. Global Anal. Geom., 17:3 (1999), 221–238 | DOI | MR | Zbl

[7] A. Chenciner, F. Laudenbach, “Morse 2-jet space and $h$-principle”, Bull. Braz. Math. Soc. (N.S.), 40:4 (2009), 455–463 ; arXiv: 0311123 | DOI | MR | Zbl

[8] J. M. Franks, Homology and dynamical systems, CBMS Regional Conf. Ser. in Math., 49, Amer. Math. Soc., Providence, RI, 1982 | MR | Zbl

[9] A. E. Hatcher, “Higher simple homotopy theory”, Ann. of Math. (2), 102:1 (1975), 101–137 | DOI | MR | Zbl

[10] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[11] E. A. Kudryavtseva, “Realization of smooth functions on surfaces as height functions”, Sb. Math., 190:3 (1999), 349–405 | DOI | MR | Zbl

[12] J. W. Milnor, Morse theory, Princeton Univ. Press, Princeton, NJ, 1963 | MR | Zbl

[13] E. A. Kudryavtseva, D. A. Permyakov, Gomotopicheskii tip prostranstv funktsii Morsa na poverkhnostyakh, http://dfgm.math.msu.su/people/koudr

[14] E. A. Kudryavtseva, “Ustoichivye topologicheskie i gladkie invarianty sopryazhennosti gamiltonovykh sistem na poverkhnostyakh”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 147–202

[15] E. A. Kudryavtseva, “Uniform Morse lemma and isotopy criterion for Morse functions on surfaces”, Moscow Univ. Math. Bull., 64:4 (2009), 150–158 | DOI

[16] B. Farb, N. V. Ivanov, “The Torelli geometry and its applications: research announcement”, Math. Res. Lett., 12:2–3 (2005), 293–301 ; arXiv: math/0311123 | MR | Zbl

[17] W. J. Harvey, “Geometric structure of surface mapping class groups”, Homological group theory (Durham, 1977), London Math. Soc. Lecture Note Ser., 36, Cambridge Univ. Press, Cambridge, 1979, 255–269 | MR | Zbl

[18] J. L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Invent. Math., 84:1 (1986), 157–176 | DOI | MR | Zbl

[19] N. V. Ivanov, “Automorphisms of complexes of curves and of Teichmuller spaces”, Progress in knot theory and related topics, Travaux en Cours, 56, Hermann, Paris, 1997, 113–120 | MR | Zbl

[20] A. Hatcher, W. Thurston, “A presentation for the mapping class group of a closed orientable surface”, Topology, 19:3 (1980), 221–237 | DOI | MR | Zbl

[21] D. Margalit, The automorphism group of the pants complex, arXiv: math/0201319

[22] S. Matveev, M. Polyak, “Cubic complexes and finite type invariants”, Invariants of knots and 3-manifolds (Kyoto, 2001), Geom. Topol. Monogr., 4, Geom. Topol. Publ., Coventry, 2002, 215–233 ; arXiv: math/0204085 | DOI | MR | Zbl

[23] E. A. Kudryavtseva, “Canonical form of Reeb graph for Morse functions on surfaces. Inversion of 2-sphere in 3-space”, Int. J. Shape Model., 5:1 (1999), 69–80

[24] V. V. Sharko, “Funktsii na poverkhnostyakh, I”, Nekotorye problemy sovremennoi matematiki, Naukova Dumka, Kiev, 1998, 408–434 | MR

[25] S. Maksymenko, “Path-components of Morse mappings spaces of surfaces”, Comment. Math. Helv., 80:3 (2005), 655–690 | DOI | MR | Zbl

[26] M. Basmanova, E. A. Kudryavtseva, Komponenty svyaznosti prostranstv funktsii Morsa s zakreplennymi kriticheskimi tochkami na poverkhnostyakh, http://dfgm.math.msu.su/people/koudr

[27] E. V. Kulinich, “On topologically equivalent Morse functions on surfaces”, Methods Funct. Anal. Topology, 4:1 (1998), 59–64 | MR | Zbl

[28] S. Maksymenko, “Homotopy types of stabilizers and orbits of Morse functions on surfaces”, Ann. Global Anal. Geom., 29:3 (2006), 241–285 ; arXiv: math/0310067 | DOI | MR | Zbl

[29] A. T. Fomenko, Kh. Tsishang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 ; 185:5 (1994), 27–78 | DOI | MR | Zbl | Zbl | MR | Zbl

[30] A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I, II”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465 ; 82:1 (1995), 21–63 | DOI | DOI | MR | MR | Zbl | Zbl

[31] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR | Zbl

[32] M. Dehn, “Die Gruppe der Abbildungsklassen”, Acta Math., 69:1 (1938), 135–206 | DOI | MR | Zbl

[33] C. J. Earle, J. Eells, “The diffeomorphism group of a compact Riemann surface”, Bull. Amer. Math. Soc., 73:4 (1967), 557–559 | DOI | MR | Zbl

[34] C. J. Earle, J. Eells, “A fibre bundle description of Teichmüller theory”, J. Differential Geometry, 3 (1969), 19–43 | MR | Zbl

[35] A. S. Kronrod, “O funktsiyakh dvukh peremennykh”, UMN, 5:1 (1950), 24–134 | MR | Zbl

[36] S. Smale, “Diffeomorphisms of the 2-sphere”, Proc. Amer. Math. Soc., 10:4 (1959), 621–626 | DOI | MR | Zbl

[37] M. W. Hirsch, Differential topology, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | Zbl

[38] J. N. Mather, “Stability of $C^\infty$ mappings: II. Infinitesimal stability implies stability”, Ann. of Math. (2), 89:2 (1969), 254–291 | DOI | MR | Zbl

[39] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[40] R. Brown, Topology: A geometric account of general topology, homotopy types and the fundamental groupoid, Ellis Horwood Ser. Math. Appl., Ellis Horwood, Chichester, 1988 | MR | Zbl

[41] R. L. Bishop, R. J. Crittenden, Geometry of manifolds, Academic Press, New York–London, 1964 | MR | Zbl