Framed Morse functions on surfaces
Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 501-567

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a smooth, compact, not necessarily orientable surface with (maybe empty) boundary, and let $F$ be the space of Morse functions on $M$ that are constant on each component of the boundary and have no critical points at the boundary. The notion of framing is defined for a Morse function $f\in F$. In the case of an orientable surface $M$ this is a closed 1-form $\alpha$ on $M$ with punctures at the critical points of local minimum and maximum of $f$ such that in a neighbourhood of each critical point the pair $(f,\alpha)$ has a canonical form in a suitable local coordinate chart and the 2-form $df\wedge\alpha$ does not vanish on $M$ punctured at the critical points and defines there a positive orientation. Each Morse function on $M$ is shown to have a framing, and the space $F$ endowed with the $C^\infty$-topology is homotopy equivalent to the space $\mathbb F$ of framed Morse functions. The results obtained make it possible to reduce the problem of describing the homotopy type of $F$ to the simpler problem of finding the homotopy type of $\mathbb F$. As a solution of the latter, an analogue of the parametric $h$-principle is stated for the space $\mathbb F$. Bibliography: 41 titles.
Keywords: Morse functions, framed Morse functions, equivalence of functions, compact surface, $C^\infty$-topology.
@article{SM_2010_201_4_a2,
     author = {E. A. Kudryavtseva and D. A. Permyakov},
     title = {Framed {Morse} functions on surfaces},
     journal = {Sbornik. Mathematics},
     pages = {501--567},
     publisher = {mathdoc},
     volume = {201},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - D. A. Permyakov
TI  - Framed Morse functions on surfaces
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 501
EP  - 567
VL  - 201
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/
LA  - en
ID  - SM_2010_201_4_a2
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A D. A. Permyakov
%T Framed Morse functions on surfaces
%J Sbornik. Mathematics
%D 2010
%P 501-567
%V 201
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/
%G en
%F SM_2010_201_4_a2
E. A. Kudryavtseva; D. A. Permyakov. Framed Morse functions on surfaces. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 501-567. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a2/