On the rate of convergence in von Neumann's ergodic theorem with continuous time
Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 493-500 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The rate of convergence in von Neumann's mean ergodic theorem is studied for continuous time. The condition that the rate of convergence of the ergodic averages be of power-law type is shown to be equivalent to requiring that the spectral measure of the corresponding dynamical system have a power-type singularity at 0. This forces the estimates for the convergence rate in the above ergodic theorem to be necessarily spectral. All the results obtained have obvious exact analogues for wide-sense stationary processes. Bibliography: 7 titles.
Keywords: von Neumann's mean ergodic theorem; rate of convergence of ergodic averages; spectral measures of a dynamical system; wide-sense stationary stochastic processes.
@article{SM_2010_201_4_a1,
     author = {A. G. Kachurovskii and A. V. Reshetenko},
     title = {On the rate of convergence in von {Neumann's} ergodic theorem with continuous time},
     journal = {Sbornik. Mathematics},
     pages = {493--500},
     year = {2010},
     volume = {201},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - A. V. Reshetenko
TI  - On the rate of convergence in von Neumann's ergodic theorem with continuous time
JO  - Sbornik. Mathematics
PY  - 2010
SP  - 493
EP  - 500
VL  - 201
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/
LA  - en
ID  - SM_2010_201_4_a1
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A A. V. Reshetenko
%T On the rate of convergence in von Neumann's ergodic theorem with continuous time
%J Sbornik. Mathematics
%D 2010
%P 493-500
%V 201
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/
%G en
%F SM_2010_201_4_a1
A. G. Kachurovskii; A. V. Reshetenko. On the rate of convergence in von Neumann's ergodic theorem with continuous time. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 493-500. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/

[1] A. G. Kachurovskii, “The rate of convergence in ergodic theorems”, Russian Math. Surveys, 51:4 (1996), 653–703 | DOI | MR | Zbl

[2] I. Assani, M. Lin, “On the one-sided ergodic Hilbert transform”, Ergodic theory and related fields (Chapel Hill, NC, USA, 2004–2006), Contemp. Math., 430, Amer. Math. Soc., Providence, RI, 2007, 21–39 | MR | Zbl

[3] V. F. Gaposhkin, “Decrease rate of the probabilities of $\varepsilon$-deviations for the means of stationary processes”, Math. Notes, 64:3 (1998), 316–321 | DOI | MR | Zbl

[4] V. P. Leonov, “On the dispersion of time-dependent means of a stationary stochastic process”, Theory Probab. Appl., 6:1 (1961), 87–93 | DOI | MR | Zbl

[5] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff, Groningen, 1971 | MR | MR | Zbl | Zbl

[6] J. von. Neumann, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:1 (1932), 70–82 | DOI | Zbl

[7] W. Rudin, Principles of mathematical analysis, McGraw-Hill, New York, 1964 | MR | Zbl | Zbl