@article{SM_2010_201_4_a1,
author = {A. G. Kachurovskii and A. V. Reshetenko},
title = {On the rate of convergence in von {Neumann's} ergodic theorem with continuous time},
journal = {Sbornik. Mathematics},
pages = {493--500},
year = {2010},
volume = {201},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/}
}
TY - JOUR AU - A. G. Kachurovskii AU - A. V. Reshetenko TI - On the rate of convergence in von Neumann's ergodic theorem with continuous time JO - Sbornik. Mathematics PY - 2010 SP - 493 EP - 500 VL - 201 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/ LA - en ID - SM_2010_201_4_a1 ER -
A. G. Kachurovskii; A. V. Reshetenko. On the rate of convergence in von Neumann's ergodic theorem with continuous time. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 493-500. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/
[1] A. G. Kachurovskii, “The rate of convergence in ergodic theorems”, Russian Math. Surveys, 51:4 (1996), 653–703 | DOI | MR | Zbl
[2] I. Assani, M. Lin, “On the one-sided ergodic Hilbert transform”, Ergodic theory and related fields (Chapel Hill, NC, USA, 2004–2006), Contemp. Math., 430, Amer. Math. Soc., Providence, RI, 2007, 21–39 | MR | Zbl
[3] V. F. Gaposhkin, “Decrease rate of the probabilities of $\varepsilon$-deviations for the means of stationary processes”, Math. Notes, 64:3 (1998), 316–321 | DOI | MR | Zbl
[4] V. P. Leonov, “On the dispersion of time-dependent means of a stationary stochastic process”, Theory Probab. Appl., 6:1 (1961), 87–93 | DOI | MR | Zbl
[5] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff, Groningen, 1971 | MR | MR | Zbl | Zbl
[6] J. von. Neumann, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:1 (1932), 70–82 | DOI | Zbl
[7] W. Rudin, Principles of mathematical analysis, McGraw-Hill, New York, 1964 | MR | Zbl | Zbl