On the rate of convergence in von Neumann's ergodic theorem with continuous time
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 493-500
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The rate of convergence in von Neumann's mean  ergodic theorem is studied for continuous time. The condition that the rate of convergence of the ergodic averages be of power-law type is shown to be equivalent to requiring that the spectral measure of the corresponding dynamical system have a power-type singularity at 0. This forces the estimates for the convergence rate in the above ergodic theorem to be necessarily spectral. All the results obtained have obvious exact analogues for wide-sense stationary processes.
Bibliography: 7 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
von Neumann's mean ergodic theorem; rate of convergence of ergodic averages; spectral measures of a dynamical system; wide-sense stationary stochastic processes.
                    
                    
                    
                  
                
                
                @article{SM_2010_201_4_a1,
     author = {A. G. Kachurovskii and A. V. Reshetenko},
     title = {On the rate of convergence in von {Neumann's} ergodic theorem with continuous time},
     journal = {Sbornik. Mathematics},
     pages = {493--500},
     publisher = {mathdoc},
     volume = {201},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/}
}
                      
                      
                    TY - JOUR AU - A. G. Kachurovskii AU - A. V. Reshetenko TI - On the rate of convergence in von Neumann's ergodic theorem with continuous time JO - Sbornik. Mathematics PY - 2010 SP - 493 EP - 500 VL - 201 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/ LA - en ID - SM_2010_201_4_a1 ER -
A. G. Kachurovskii; A. V. Reshetenko. On the rate of convergence in von Neumann's ergodic theorem with continuous time. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 493-500. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a1/
