@article{SM_2010_201_4_a0,
author = {E. S. Gorskaya},
title = {An algorithm for linearizing convex extremal problems},
journal = {Sbornik. Mathematics},
pages = {471--492},
year = {2010},
volume = {201},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2010_201_4_a0/}
}
E. S. Gorskaya. An algorithm for linearizing convex extremal problems. Sbornik. Mathematics, Tome 201 (2010) no. 4, pp. 471-492. http://geodesic.mathdoc.fr/item/SM_2010_201_4_a0/
[1] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[2] Yu. Nesterov, A. Nemirovskii, Interior-point polynomial algorithms in convex programming, SIAM Stud. Appl. Math., 13, SIAM, Philadelphia, PA, 1994 | MR | Zbl
[3] Yu. Nesterov, Introductory lectures on convex optimization, Appl. Optim., 87, Kluwer Acad. Publishers, Boston, MA, 2004 | MR | Zbl
[4] P. M. Gruber, “Error of asymptotic formulae for volume approximation of convex bodies in $\mathbb E^d$”, Monatsh. Math., 135:4 (2002), 279–304 | DOI | MR | Zbl
[5] C. Schütt, E. Werner, “Random polytopes with vertices on the boundary of a convex body”, C. R. Acad. Sci. Paris Sér. I Math., 331:9 (2000), 697–701 | DOI | MR | Zbl
[6] R. Schneider, “Polyhedral approximation of smooth convex bodies”, J. Math. Anal. Appl., 128:2 (1987), 470–474 | DOI | MR | Zbl
[7] M. Ludwig, C. Schütt, E. Werner, “Approximation of the Euclidean ball by polytopes”, Studia Math., 173:1 (2006), 1–18 | DOI | MR | Zbl
[8] L. Chen, “New analysis of the sphere covering problems and optimal polytope approximation of convex bodies”, J. Approx. Theory, 133:1 (2005), 134–145 | DOI | MR | Zbl
[9] J. Bourgain, J. Lindenstrauss, V. Milman, “Approximation of zonoids by zonotopes”, Acta Math., 162:1 (1989), 73–141 | DOI | MR | Zbl
[10] V. Yu. Protasov, “The generalized joint spectral radius. A geometric approach”, Izv. Math., 61:5 (1997), 995–1030 | DOI | MR | Zbl
[11] M. A. Lopez, Sh. Reisner, “Hausdorff approximation of convex polygons”, Comput. Geom., 32:2 (2005), 139–158 | DOI | MR | Zbl
[12] J. S. Müller, “Step by step approximation of plane convex bodies”, Arch. Math. (Basel), 58:6 (1992), 606–610 | DOI | MR | Zbl
[13] R. Schneider, “Affine-invariant approximation by convex polytopes”, Studia Sci. Math. Hungar., 21:3–4 (1986), 401–408 | MR | Zbl
[14] D. E. McClure, R. A. Vitale, “Polygonal approximation of plane convex bodies”, J. Math. Anal. Appl., 51:2 (1975), 326–358 | DOI | MR | Zbl
[15] V. Yu. Protasov, “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundament. i prikl. matem., 2:1 (1996), 205–231 | MR | Zbl
[16] A. A. Ligun, V. F. Storchai, “On the best choice of nodes for approximation by splines in the metric of $L_p$”, Math. Notes, 20:4 (1976), 899–903 | DOI | MR | Zbl | Zbl
[17] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Stud. Math. Appl., 6, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl
[18] D. S. Watkins, Fundamentals of matrix computations, Pure Appl. Math. (N. Y.), Wiley, New York, 2002 | MR | Zbl
[19] G. H. Golub, Ch. F. Van Loan, Matrix computations, Johns Hopkins Stud. Math. Sci., Johns Hopkins Univ. Press, Baltimore, MD, 1996 | MR | Zbl